SDS1000X-E Series

Super Phosphor Oscilloscope

SDS1202X-E

Product overview

SIGLENT's new SDS1000X-E Series Super Phosphor Oscilloscope is available in one bandwidth, 200 MHz . It has a maximum sample rate of $1 \mathrm{GSa} / \mathrm{s}$ and a standard record length of 14 Mpts. For ease-of-use, the most commonly used functions can be accessed with its user-friendly front panel design.

The SDS1000X-E series employs a new generation of SPO (Super Phosphor Oscilloscope) technology that provides excellent signal fidelity and performance. The system noise is also lower than similar products in the industry. It comes with a minimum vertical input range of $500 \mathrm{uV} / \mathrm{div}$, an innovative digital trigger system with high sensitivity and low jitter, and a waveform capture rate of 400,000 frames/ sec (sequence mode). The SDS1000X-E also employs a 256 -level intensity grading display function and a color temperature display mode not found in other models in this class. Siglent's latest oscilloscopes offering supports multiple powerful triggering modes including serial bus triggering. Decoding is standard configuration including IIC,SPI,UART,CAN,LIN. History waveform recording and sequential triggering enable extended waveform recording and analysis. Another powerful addition is the new 1 million points FFT math function that gives the SDS1000X-E very high frequency resolution when observing signal spectra. The new design also includes a hardware co-processor that delivers measurements quickly and accurately. The features and performance of Siglent's new SDS1000X-E cannot be matched anywhere else in this price class.

Key Features

200 MHz bandwidth modelΔ Real-time sampling rate up to $1 \mathrm{GSa} / \mathrm{s}$
The newest generation of SPO technology
-Waveform capture rate up to $100,000 \mathrm{wfm} / \mathrm{s}$ (normal mode), and 400,000 wfm/s (sequence mode)
-Supports 256-level intensity grading and color display modes
-Record length up to 14 Mpts
-Digital trigger system
Intelligent triggers: Edge, Slope, Pulse Width, Window, Runt, Interval, Time out (Dropout), Pattern

Serial bus triggering and decoding (Standard), supports IIC, SPI, UART, RS232, CAN, and LIN

Video trigger, supports HDTV
Lew noise, supports $500 \mu \mathrm{~V} /$ div to $10 \mathrm{~V} /$ div voltage scales

10 types of one-button shortcuts, supports Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweep, Zoom and Print
\square Segmented acquisition (Sequence) mode, dividing the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time segment to capture the qualifying event
History waveform record (History) function, the maximum recorded waveform length is 80,000 frames
\square Automatic measurement function for 38 parameters, supports Statistics, Zoom measurement, Gating measurement, Math measurement, History measurement and Ref measurement

H 1 Mpoints FFT
True measurement and math of all sampled data points (to 14M)

Math functions (FFT, addition, subtraction, multiplication, division, integration, differential, square root)
\downarrow Preset key can be customized for user settings or factory "defaults"

- Security Erase mode

High Speed hardware based Pass/Fail function
Large 7 inch TFT-LCD display with $800 * 480$ resolution
\square Multiple interface types: USB Host, USB Device (USBTMC), LAN (VXI-11), Pass/Fail, Trigger Out

- Supports SCPI remote control commands
\square Supports Multi-language display and embedded online help

Models and key Specification

Model	SDS1202X-E
Bandwidth	200 MHz
Sampling Rate (Max.)	$1 \mathrm{GSa} / \mathrm{s}$
Channels	$2+$ EXT
Memory Depth (Max.)	$7 \mathrm{Mpts} / \mathrm{CH}$ (Dual-Channel); $14 \mathrm{Mpts} / \mathrm{CH}$ (Single-Channel)
Waveform Capture Rate (Max.)	100,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)
Trigger Type	Edge, Slope, Pulse Width, Window, Runt, Interval, Dropout, Pattern, Video
Serial Trigger (Standard)	IIC, SPI, UART/RS232, CAN, LIN
Decode Type (Standard)	IIC, SPI, UART/RS232, CAN, LIN
I/O	USB Host, USB Device, LAN, Pass/Fail, Trigger Out
Probe (Std)	2 pcs passive probe PP215
Display	7 inch TFT-LCD (800x480)
Weight	Without package 2.5 Kg; With package 3.5 Kg

Functions \& Characteristics

I 7 Inch TFT-LCD Display and 10 One-button Menus

- 7-inch TFT-LCD display with 800 * 480 resolution
- Most commonly used functions are accessible using 10 different one-button operation keys: Auto Setup, Default, Cursor, Measure, Roll, History, Persist, Clear

[^0]
Functions \& Characteristics

Record Length of Up to 14 Mpts

Using hardware-based Zoom technologies and a record length of up to 14 Mpts, users are able to use a higher sampling rate to capture more of the signal and then quickly zoom in to focus on the area of interest.

Waveform Capture Rate Up to 400,000 wfm/s

With a waveform capture rate of up to $400,000 \mathrm{wfm} / \mathrm{s}$ (sequence mode), the oscilloscope can easily capture the unusual or low-probability events.

256-Level Intensity Grading and Color Temperature Display

SPO display technology delivers fast refresh rates. The resulting intensitygraded traces are brighter where events occur more frequently and less bright where they occur less often.

Serial Bus Decoding Function (Standard)

SDS1000X-E displays the decoding through the events list. Bus protocol information can be quickly and intuitively displayed in a tabular format.

The color temperature display is similar to the intensity-graded trace in function, except that the trace occurrence is represented by different colors (color "temperature") as opposed to changes in the intensity of one color. Red represents the most common occurrences or probabilities, while blue is used to mark points that occur least frequently.

True Measurement to 14 Mpoints

At any one timebase, the SDS1000X-E can measure using all 14 M sample points. This ensures the accuracy of measurements while the math coprocessor decreases measurement time and increases ease-of-use.

1 History Waveforms (History) Mode and Segmented Acquisition (Sequence)

Playback the latest triggered events using the history function. Segmented memory zcquisition will store the waveform into multiple (up to 80,000) memory segments, each segment will store triggered waveforms and timestamp each frame.

1 Mpoints FFT

The new math co-processor enables FFT analysis of incoming signals using up to 1 M samples per waveform. This provides high frequency resolution with a fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs.

Customizable Default Key

The current parameters of oscilloscope can be preset to Default Key through the Save menu.

Gate and Zoom Measurement

Through Gate and Zoom measurement, the user can specify an arbitrary interval of waveform data analysis and statistics. This helps avoid measurement errors that can be caused by invalid or extraneous data, greatly enhancing the measurements' validity and flexibility.

High Speed Hardware-Based Pass/Fail Function

The SDS1000X-E utilizes a hardware-based Pass/Fail function, performing up to 40,000 Pass / Fail decisions each second. Easily generate userdefined test templates provide trace mask comparison making it suitable for long-term signal monitoring or automated production line testing.

Complete Connectivity

SDS1000X-E supports USB Host, USB Device (USB-TMC), LAN (VXI-11), Pass/Fail and Trigger Out

Specification

Acquire System

Sampling Rate	$1 \mathrm{GSa} / \mathrm{s}$ (Single - Channel), $500 \mathrm{MSa} / \mathrm{s}$ (Dual - Channel)
Memory Depth	Max $14 \mathrm{Mpts} / \mathrm{Ch}$ (Single -Channel), $7 \mathrm{Mpts} / \mathrm{Ch}$ (Dual - Channel)
Peak Detect	4 nsec
Average	Averages: $4,16,32,64,128,256,512,1024$
Eres	Enhance bits: $0.5,1.5,2,2.5,3 ;$ Selectable
Waveform interpolation	Sinx/x, Linear

Input		
Channels	2 Analog	
Coupling	$\mathrm{DC}, \mathrm{AC}, \mathrm{GND}$	
Impedance	$\mathrm{DC}:(1 \mathrm{M} \Omega \pm 2 \%) \\|(18 \mathrm{pF} \pm 2 \mathrm{pF})$	
Max. Input voltage	$1 \mathrm{M} \Omega \leq 400 \mathrm{Vpk}(\mathrm{DC}+$ Peak AC <=10 kHz)	
CH to CH Isolation	$\mathrm{DC} \sim \mathrm{Max} \mathrm{BW}>40 \mathrm{~dB}$	
Probe attenuator	$0.1 \mathrm{X}, 0.2 \mathrm{X}, 0.5 \mathrm{X}, 1 \mathrm{X}, 2 \mathrm{X}, 5 \mathrm{X}, 10 \mathrm{X} . \ldots \ldots .1000 \mathrm{X}, 2000 \mathrm{X}, 5000 \mathrm{X}, 10000 \mathrm{X}$	

Vertical System	
Bandwidth (-3 dB)	200 MHz
Vertical Resolution	8 bit
Vertical Scale (Probe 1X)	$500 \mu \mathrm{~V} / \mathrm{div}-10 \mathrm{~V} / \mathrm{div}$ (1-2-5 sequence)
Offset Range (Probe 1X)	$500 \mu \mathrm{~V}-150 \mathrm{mV}$: $\pm 2 \mathrm{~V}$
	$152 \mathrm{mV}-1.5 \mathrm{~V}$: $\pm 20 \mathrm{~V}$
	$1.52 \mathrm{~V}-10 \mathrm{~V}: \pm 200 \mathrm{~V}$
Bandwidth Limit	$20 \mathrm{MHz} \pm 40 \%$
Bandwidth Flatness	DC-10\% (BW): $\pm 1 \mathrm{~dB}$
	10\%-50\% (BW): $\pm 2 \mathrm{~dB}$
	50\%-100\% (BW): $+2 \mathrm{~dB} /-3 \mathrm{~dB}$
Low Frequency Response	
($\mathrm{AC}-3 \mathrm{~dB}$)	$\leq 10 \mathrm{~Hz}$ (at input BNC)
Noise	ST-DEV ≤ 0.5 division ($<1 \mathrm{mV} /$ div)
	ST-DEV ≤ 0.2 division ($<2 \mathrm{mV} / \mathrm{div}$)
	ST-DEV ≤ 0.1 division ($\geq 2 \mathrm{mV} /$ div)
SFDR including harmonics	$\geq 35 \mathrm{~dB}$
DC Gain Accuracy	$\leq \pm 3.0 \%$: $5 \mathrm{mV} /$ div $\sim 10 \mathrm{~V} /$ div
	$\leq \pm 4.0 \%$: $\leq 2 \mathrm{mV} / \mathrm{div}$
Offset Accuracy	$\pm(1 \% *$ Offset+1.5\%*8*div+2 mV): $\geq 2 \mathrm{mV} /$ div
	$\pm(1 \% *$ Offset+1.5\%*8*div+500 uV): $\leq 1 \mathrm{mv} / \mathrm{div}$
Risetime	Typical 1.8 ns
Overshoot (500 ps Pulse)	<10\%

Horizontal System	
Timebase Scale	$1.0 \mathrm{~ns} / \mathrm{div}-100 \mathrm{~s} / \mathrm{div}$
Channel Skew	$<100 \mathrm{ps}$
Waveform Capture Rate	Up to $100,000 \mathrm{wfm} / \mathrm{s}$ (normal mode), $400,000 \mathrm{wfm} / \mathrm{s}$ (sequence mode)
Intensity grading	256 Levels
Display Format	Y-T, X-Y, Roll
Timebase Accuracy	$\pm 25 \mathrm{ppm}$
Roll Mode	$50 \mathrm{~ms} / \mathrm{div}-100 \mathrm{~s} / \operatorname{div}(1-2-5 \mathrm{step})$

Trigger System	
Trigger Mode	Auto, Normal, Single
Trigger Level	Internal: ± 4.5 div from the center of the screen EXT: $\pm 0.6 \mathrm{~V}$ EXT/5: $\pm 3 \mathrm{~V}$
Holdoff Range	$80 \mathrm{~ns}-1.5 \mathrm{~s}$
Trigger Coupling	AC DC LFRJ HFRJ Noise RJ (CH1 - CH2)
Coupling Frequency Response $(\mathrm{CH} 1 \sim \mathrm{CH} 2)$	DC: Passes all components of the signal AC: Blocks DC components and attenuates signals below 8 Hz LFRJ: Blocks the DC component and attenuates the low-frequency components below 2 MHz HFRJ: Attenuates the high-frequency components above 1.2 MHz
Coupling Frequency Response (EXT)	DC: Passes all components of the signal AC: Blocks DC components and attenuates signals below 30 Hz LFRJ: Blocks the DC component and attenuates the low-frequency components below 10 KHz HFRJ: Attenuates the high-frequency components above 500 KHz
Trigger Accuracy (Typical)	Internal: $\pm 0.2 \mathrm{div}$ EXT: $\pm 0.4 \mathrm{div}$
Trigger Sensitivity	CH1 - CH2: DC - Max BW 0.6 div EXT: 200 mVpp DC - 10 MHz 300 mVpp 10 MHz - BW frequency EXT/5: 1 Vpp DC - 10 MHz ; 1.5 Vpp 10 MHz - BW frequency
Trigger Jitter	<100 ps (CH1-CH2)
Trigger Displacement	Pre-Trigger: 0-100\% Memory
	Delay Trigger: 0 to 10,000 div
Edge Trigger	
Slope	Rising, Falling, Rising \& Falling
Source	CH1/CH2/EXT/(EXT/5)/AC Line
Slope Trigger	
Slope	Rising, Falling
Limit Range	$\langle\rangle,,\langle \rangle,\rangle<$
Source	$\mathrm{CH} 1 / \mathrm{CH} 2$
Time Range	$2 \mathrm{~ns}-4.2 \mathrm{~s}$
Resolution	1 ns

Pulse Trigger	
Polarity	+wid, -wid
Limit Range	<, >, <>, > <
Source	$\mathrm{CH} 1 / \mathrm{CH} 2$
Pulse Range	2ns-4.2 s
Resolution	1 ns
Video Trigger	
Signal Standard	NTSC, PAL, 720p/50, 720p/60, 1080p/50, 1080p/60, 1080i/50,
	1080i/60, Custom
Source	CH1 / CH2
Sync	Any, Select
Trigger condition	Line, Field
Window Trigger	
Window Type	Absolute, Relative
Source	CH1 / CH2
Interval Trigger	
Slope	Rising, Falling
Limit Range	$<,>,<>,><$
Source	$\mathrm{CH} 1 / \mathrm{CH} 2$
Time Range	2 ns -4.2 s
Resolution	1 ns
Dropout Trigger	
Timeout Type	Edge, State
Source	CH1 / CH2
Slope	Rising, Falling
Time Range	2ns-4.2s
Resolution	1 ns
Runt Trigger	
Polarity	+wid, -wid
Limit Range	<, >, <>, > <
Source	CH1 / CH2
Time Range	2 ns -4.2s
Resolution	1 ns
Pattern Trigger	
Pattern Setting	Invalid, Low, High
Logic	AND, OR, NAND, NOR
Source	$\mathrm{CH} 1 / \mathrm{CH} 2$
Limit Range	<, >, <>, ><
Time Range	$2 \mathrm{~ns}-4.2 \mathrm{~s}$
Resolution	1 ns

Serial Trigger	
I2C Trigger	
Condition	Start, Stop, Restart, No Ack, EEPROM, 7 bits Address \& Data, 10 bits Address \& Data, Data Length
Source (SDA/SCL)	CH1, CH2
Data format	Hex
Limit Range	EEPROM: =, >, <
Data Length	EEPROM: 1 byte Addr \& Data: 1-2 byte Data Length: 1-12 byte
R/W bit	Addr \& Data: Read, Write, Do not care
SPI Trigger	
Condition	Data
Source (CS/CL/Data)	CH1, CH2
Data format	Binary
Data Length	4-96 bit
Bit Value	0, 1, X
Bit Order	LSB, MSB
UART/ RS232 Trigger	
Condition	Start, Stop, Data, Parity Error
Source (RX/TX)	CH1, CH2
Data format	Hex
Limit Range	$=, \gg$
Data Length	1 byte
Data Width	5 bit, 6 bit, 7 bit, 8 bit
Parity Check	None, Odd, Even
Stop Bit	1 bit, 1.5 bit, 2 bit
Idle Level	High, Low
Baud(Selectable)	600/1200/2400/4800/960019200/38400/57600/115200 bit/s
(Custom)	$300 \mathrm{bit} / \mathrm{s}-334000 \mathrm{bit} / \mathrm{s}$
CAN Trigger	
Condition	All, Remote, ID, ID + Data, Error
Source	$\mathrm{CH} 1, \mathrm{CH} 2$
ID	STD (11 bit), EXT (29 bit)
Data Format	Hex
Data Length	1-2 byte
Baud Rate (Selectable)	5k/10k/20k/50k/100k/125k/250k/500k/800k/1M bit/s
Baud Rate (Custom)	$5 \mathrm{kbit} / \mathrm{s}-1 \mathrm{Mbit} / \mathrm{s}$
LIN Trigger	
Condition	Break, Frame ID, ID+Data, Error
Source	CH1, CH2
ID	1 byte
Data Format	Hex
Data Length	1-2 byte
Baud Rate (Selectable)	600/1200/2400/4800/9600/19200 bit/s
Baud Rate (Custom)	$300 \mathrm{bit} / \mathrm{s}-20 \mathrm{kbit} / \mathrm{s}$

Serial Decoder	
I2C Decoder	
Signal	SCL, SDA
Address	7 bits, 10 bits
Threshold	-4.5-4.5 div
List	1-7 lines
SPI Decoder	
Signal	SCL, MISO, MOSI, CS
Edge Select	Rising, Falling
Idle Level	Low, High
Bit Order	MSB, LSB
Threshold	-4.5-4.5 div
List	1-7 lines
UART/ RS232 Decoder	
Signal	RX, TX
Data Width	$5 \mathrm{bit}, 6 \mathrm{bit}, 7 \mathrm{bit}, 8 \mathrm{bit}$
Parity Check	None, Odd, Even
Stop Bit	1 bit, 1.5 bit, 2 bit
Idle Level	Low, High
Threshold	-4.5-4.5 div
List	1-7 lines
CAN Decoder	
Signal	CAN_H, CAN_L
Source	CAN_H, CAN_L, CAN_H-CAN_L
Threshold	-4.5-4.5 div
List	1-7 lines
LIN Decoder	
LIN Specification Package Revision	Ver1.3, Ver2.0
Threshold	-4.5-4.5 div
List	1-7 lines

Measurement

Source

CH1, CH2, Math, Ref, History
Number of Measurements Display 5 measurements at the same time
Measurement Range
Screen region, Gate region
Measurement Parameters (38 Types)

Measurement
Measurement Parameters (38 Types)

	Max	Highest value in input waveform
	Min	Lowest value in input waveform
	Pk-Pk	Difference between maximum and minimum data values
	Ampl	Difference between top and base in a bimodal signal, or between max and min in an unimodal signal
	Top	Value of most probable higher state in a bimodal waveform
	Base	Value of most probable lower state in a bimodal waveform
	Mean	Average of all data values
	Cmean	Average of data values in the first cycle
Vertical (Voltage)	Stdev	Standard deviation of all data values
	Cstd	Standard deviation of all data values in the first cycle
	VRMS	Root mean square of all data values
	Crms	Root mean square of all data values in the first cycle
	FOV	Overshoot after a falling edge; (base-min)/Amplitude
	FPRE	Overshoot before a falling edge; (max-top)/Amplitude
	ROV	Overshoot after a rising edge; (max-top)/Amplitude
	RPRE	Overshoot before a rising edge; (base-min)/Amplitude
	Level@X	the voltage value of the trigger point
	Period	Period for every cycle in waveform at the 50\% level, and positive slope
	Freq	Frequency for every cycle in waveform at the 50% level, and positive slope
	+Wid	Width measured at 50\% level and positive slope
	-Wid	Width measured at 50\% level and negative slope
	Rise Time	Duration of rising edge from 10-90\%
	Fall Time	Duration of falling edge from 90-10\%
Horizontal (Time)	Bwid	Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing
	+Dut	Ratio of positive width to period
	-Dut	Ratio of negative width to period
	Delay	Time from the trigger to the first transition at the 50\% crossing
	Time@Level	Time from the trigger to each rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number $=$ Count)
Delay	Phase	Calculate the phase difference between two edges
	FRR	Time between the first rising edges of the two channels
	FRF	Time from the first rising edge of channel A to the first falling edge of channel B
	FFR	Time from the first falling edge of channel A to the first rising edge of channel B
	FFF	Time from the first falling edge of channel A to the first falling edge of channel B
	LRR	Time from the first rising edge of channel A to the last rising edge of channel B
	LRF	Time from the first rising edge of channel A to the last falling edge of channel B
	LFR	Time from the first falling edge of channel A to the last rising edge of channel B
	LFF	Time from the first falling edge of channel A to the last falling edge of channel B
	Skew	Time of source A edge minus time of nearest source B edge
Cursors	Manual : Tim Track: Time	$\begin{aligned} & \mathrm{X} 1, \mathrm{X} 2,(\mathrm{X} 1-\mathrm{X} 2),(1 / \Delta \mathrm{T}) \quad \text { Voltage Y1, Y2, (Y1-Y2) } \\ & , \mathrm{X} 2,(\mathrm{X} 1-\mathrm{X} 2) \end{aligned}$
Statistics	Current, Mean	Min, Max, Stdev, Count
Counter	Hardware 6 b	counter (channels are selectable)

Math Function

Operation	$+,-, *, /, \mathrm{FFT}, \mathrm{d} / \mathrm{dt}, \int \mathrm{dt}, \sqrt{ }$
FFT window	Rectangular, Blackman, Hanning, Hamming
FFT display	Full Screen, Split
Number of Decoders	2

I/O	
Standard	3.3 V TTL Output Host, USB Device, LAN, Pass/Fail, Trigger Out
Pass/Fail	
Display (Screen)	7 -inch TFT LCD
Display Type	800×480
Display Resolution	24 bit
Display Color	$500: 1$
Contrast (Typical)	300 nit
Backlight	8×14 divisions
Range	Dot, Vector
Display (Waveform)	Off, 1 Sec, 5 Sec, 10 Sec, 30 Sec, Infinite
Display Mode	Normal, Color
Persist Time	1 min, 5 min, 10 min, 30 min, 1 hour, Off
Color Display	Simplified Chinese, Traditional Chinese, English, French, Japanese, Korean, German, Russian, Italian, Portuguese
Screen Saver	
Language	

Environments

Temperature

Humidity

Height

Electromagnetic Compatibility

Safety

Operating: $10^{\circ} \mathrm{C}-+40^{\circ} \mathrm{C}$
Non-operating: $-20^{\circ} \mathrm{C}-+60^{\circ} \mathrm{C}$
Operating: $85 \% \mathrm{RH}, 40^{\circ} \mathrm{C}, 24$ hours
Non-operating: 85% RH, $65^{\circ} \mathrm{C}, 24$ hours
Operating: $\leq 3000 \mathrm{~m}$
Non-operating: $\leq 15,266 \mathrm{~m}$
2004/108/EC)
Execution Standard EN 61326-1:2006
EN 61000-3-2:2006 + A2:2009, EN 61000-3-3:2008
2006 / 95 / EC
Execution Standard EN 61010-1:2010/EN 61010-2-030:2010

Power Supply

Input Voltage	$100-240$ VAC, CAT II, Auto selection
Frequency	$50 / 60 / 400 \mathrm{~Hz}$
Power	25 W Max

Mechanical

Length: 312 mm
Dimensions
Width: 134 mm
Height: 150 mm
Weight

Probes and Accessories

| Probe | Picture | Bandwidth: $70 \mathrm{MHz}, 1 \mathrm{X} / 10 \mathrm{X}, 1 \mathrm{M} / 10 \mathrm{Mohm}, 300 \mathrm{~V} / 600 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- |

DPB5150

DPB5150A

Differential Probe

DPB5700

DPB5700A

HPB4010

High Voltage

Isolated front end ISFE

Bandwidth: 100 MHz, Differential Range: 1500 V (DC + Peak AC), 50 X/500 X , Accuracy: $\pm 2 \%$ DC 5 V/1 A USB adapter

Bandwidth: 70 MHz, Differential Range: 1500 V (DC + Peak AC), 50 X/500 X Accuracy: $\pm 2 \%$, DC 5 V/1 A USB adapter

Bandwidth: 70 MHz, Differential Range: 7000 V (DC + Peak AC), 100 X/1000 X, Accuracy: $\pm 2 \%$, DC 5 V/1 A USB adapter

Bandwidth: 100 MHz
Differential Range: 7000 V (DC + Peak AC), $100 \mathrm{X} / 1000 \mathrm{X}$
Accuracy: $\pm 2 \%$
DC 5 V/1 A USB adapter
Bandwidth: 40 MHz
Differential Range: DC 10 KV, AC (rms): 7 KV (sine), AC (Vpp): 20 KV (Pulse) 1000 X
Accuracy: $\leq 3 \%$
The USB Device interface allows a connection into the GPIB interface. USBGPIB adapter allows the oscilloscope to easily send and receive commands through the GPIB. USB follows the USB2.0 specification. GPIB follows the IEEE488.2 standard.

Output signals include square waves, sine, AM, fast edge , pulse, PWM, I2C, CAN, LIN etc. Used in teaching and demonstrations.

Ordering information

Product Name	SDS1000X-E Series Digital Oscilloscope		
	SDS1202X-E 200 MHz	Two Channels	
Standard Accessories	USB Cable -1		
	Quick Start-1		
	Passive Probe -2		
	Certification -1		
	Power Cord -1		
Optional Accessories	Isolated Front End		ISFE
	STB Demo Source		STB-3
	High Voltage Probe		HPB4010
	Current Probe		CP4020/CP4050/CP4070/ CP4070A/CP5030/CP5030A/ CP5150/CP5500
	Differential Probe		DPB4080/DPB5150/DPB5150A /DPB5700/DPB5700A

SDS1000X-E Series

Super Phosphor Oscilloscope

Headquarter:

SIGLENT TECHNOLOGIES CO., LTD.
Add: Bldg No. 4 \& No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China.
Tel: + 8675536615186
Fax: + 8675533591582
Email: sales@siglent.com;
Website: http://www.siglent.com/ens/

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800
Toll Free: 877-515-5551
Fax: 440-399-1211
Email: info@siglent.com
Website: www.siglentamerica.com

Europe:

SIGLENT TECHNOLOGIES EUROPE GmbH ADD: Liebigstrasse 2-20, Gebaeude 22113 Hamburg Germany
Tel: $+49(0)-819-95946$
Fax: +49(0)-819-95947
Email: info-eu@siglent.com
Website: www.siglenteu.com

Abstract

About SIGLENT SIGLENT is an international high-tech company, concentrating on R\&D, sales, production and services of electronic test \& measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, digital multimeters, DC power supplies, spectrum analyzers, isolated handheld oscilloscopes and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test \& measurement.

Follow us on Facebook: SiglentTech

[^0]: Sweep, Zoom, Print

