Declaration

Copyright © SIGLENT TECHNOLOGIES CO., LTD. All rights reserved.
Contents in this Manual are not allowed to be copied, extracted and translated before being allowed by SIGLENT Company.
General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

- **To Avoid Fire or Personal Injury**
- **Use proper power line.** Only the special power line of the products approved by the state should be used.
- **Ground the instrument.** This generator is grounded through the protective terra conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to the earth ground. Make sure that the instrument is properly grounded before connecting the input or output terminals.
- **Observe all the ratings of the terminal.** To avoid fire or shock, observe all the ratings and symbols that marked on the instrument. Read the user guide carefully before making connections to the instrument.
- **Do not operate without Covers.** Do not operate the product with covers or panels removed.
- **Avoid circuit or wire exposed.** Do not touch the exposed connections or components when the power is on.
- **Do not operate with suspected failures.** If you suspect there is damage with this product, you should have it inspected by qualified service personnel authorized by SIGLENT before further operations.
- **Provide proper ventilation.**
- Do not operate in wet/damp conditions.
- Do not operate in an explosive atmosphere.
- Keep the product’s surfaces clean and dry.
- Not position the equipment so that it is difficult to operate the disconnecting device (detachable plug)
If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

This product has been tested to the requirements of CAN/CSA-C22.2 No. 61010-1, second edition, including Amendment 1, or a later version of the same standard incorporating the same level of testing requirements.

Not to use the product for measurements within other measurement categories, such as CAT II, CAT III, CAT IV.

Not to use the equipment for measurements on mains circuits, not to use the equipment for measurements on voltage exceed the voltage range describe in the manual.

Only probe assemblies which meet the manufacturer’s specifications shall be used.

The Responsible body or operator should refer to the instruction manual to preserve the protection afford by the equipment. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Any parts of the device and its accessories are not allowed to be changed or replaced, other than authorized by the manufacturer of his agent.
Safety Terms and Symbols

Terms in this guide, these terms may appear in this manual:

- **Hazardous Voltage**
- **Refer to the Instructions**
- **Protective Earth Ground**
- **Earth Ground**

Terms on the product, terms below may appear on the product:

DANGER: Indicates an injury or hazard that may immediately happen.

WARNING: Indicates an injury or hazard that may not immediately happen.

CAUTION: Indicates that a potential damage to the instrument or other property might occur.

Symbols on the product: Symbols as followed may appear on the product:

- **WARNING**: Warning statements indicate the conditions or practices that could result in injury or loss of life.

- **CAUTION**: Caution statements indicate the conditions or practices that could result in damage to this product or other property.
Introduction of SDG1000 Series

The manual covers SDG1000 Series Function/Arbitrary Waveform Generators.

SIGLENT SDG1000 Series Function/Arbitrary Waveform Generators adopt the direct digital synthesis (DDS) technology, which can provide stable, high-precision, pure and low distortion signals. Its combination of excellent system features, easiness in usage and versatile functions makes this generator a perfect solution for your job now and in the future.

SDG1000 Series Function/Arbitrary Waveform Generator has a clear and simple front-panel. The user-friendly panel layout and instructions, versatile terminals, direct graph interface, built-in instructions and help system have greatly simplified the operation process, with the help of which, users do not have to spend a great deal of time learning and familiarizing the operation of the generator before they can use it proficiently. The built-in AM, FM, PM, ASK, FSK and PWM modulation functions generate modulated waveforms at ease, without the help of a separate modulating source. USB I/O is a standard accessory, while GPIB is optional. Remote instructions meet the SCPI specification requirements.

From the characteristics and specifications given below, you will understand how SDG1000 can satisfy your requirements.

- DDS technology provides precise, stable and low distortional output
signal.

- 3.5” TFT color LCD display.
- 125MSa/s sampling rate, 14-bit resolution.
- Frequency characteristics:
 - Sine: 1μHz to 50MHz
 - Square: 1μHz to 25 MHz
 - Ramp: 1μHz to 300kHz
 - Pulse: 500μHz to 5MHz
 - White Noise: 50MHz bandwidth (-3dB)
 - Arbitrary: 1μHz to 5MHz
- 5 standard waveforms: Sine, Square, Ramp, Pulse, Noise
- Self-defined arbitrary waveform
- Multiple modulation function: AM, FM, PM, ASK, FSK, PWM, DSB-AM, Sweep and Burst.
- Multiple I/O: external modulation source, external 10 MHz reference input, external trigger source, waveform output, synchronous signal output.
- Support USB storage device. Software updating could also be performed using USB devices.
- Up to 16k sample points of internal waveform depth, which can rebuild or simulate any complex waveform.
- Remote control is realized using the USB.
- Multiple interfaces: USB host & device, GPIB (IEEE-488) (option).
- Support the seamless connection with SIGLENT Series Digital Oscilloscopes; can directly read and rebuild the stored waveform in the oscilloscopes.
- 2 languages (English and Chinese) user interface and built-in help system.
Note:
All the specifications described in this guide are according to SDG1050. If you need to know the particular specifications about the other types, please see ‘Specifications’ in Chapter 6.
Catalogue

General Safety Summary .. II

Introduction of SDG1000 Series ... VI

1. Getting Started .. 1
 1.1. General Inspection ... 2
 1.2. Handle Adjustment ... 3
 1.3. The Front/Rear Panel .. 4
 1.4. To Set a Waveform .. 7
 1.5. To Set Modulate/Sweep/Burst ... 12
 1.6. To Set Output ... 14
 1.7. To Use Digital Input .. 15
 1.8. To Use Store/Utility/Help Function ... 16

2. Operating Your Generator ... 17
 2.1. To Set Sine Signals ... 18
 2.2. To Set Square Signals ... 23
 2.3. To Set Ramp Signals .. 26
 2.4. To Set Pulse Signals ... 29
 2.5. To Set Noise Signals .. 33
 2.6. To Set Arbitrary Signals .. 35
 2.7. To Generate the Modulated Waveform ... 42
 2.8. To Generate Sweep .. 52
 2.9. To Generate Burst ... 54
 2.10. To Store and Recall .. 58
 2.11. To Set the Utility Function .. 64
 2.12. Test/Cal ... 77
 2.13. Edition Information ... 82
 2.14. Updating Firmware .. 84
2.15. How to Use the Built-in Help System ... 86

3. Application and Examples .. 87
 3.1. Example 1: Generate a Sine Wave ... 88
 3.2. Example 2: Generate a Square Wave .. 90
 3.3. Example 3: Generate a Ramp Wave ... 92
 3.4. Example 4: Generate a Pulse Wave ... 94
 3.5. Example 5: Generate a Noise Wave ... 96
 3.6. Example 6: Generate an Arbitrary Wave 97
 3.7. Example 7: Generate a Sweep Linear Wave 99
 3.8. Example 8: Generate a Burst Wave ... 101
 3.9. Example 9: Generate an AM Wave ... 103
 3.10. Example 10: Generate a FM Wave ... 105
 3.11. Example 11: Generate a PM Wave ... 107
 3.12. Example 12: Generate a FSK Wave .. 109
 3.13. Example 13: Generate an ASK Wave .. 111
 3.14. Example 14: Generate a PWM Wave .. 113
 3.15. Example 15: Generate a DSB-AM Wave 115

4. Troubleshooting ... 117
 General Inspecting .. 117
 Troubleshooting .. 118

5. Service and Support .. 119
 Maintain summary ... 119
 Contact SIGLENT .. 120

6. Appendix ... 121
 Appendix A: Accessories .. 121
 Appendix B: Daily Maintain and Cleaning .. 122
1. Getting Started

This chapter covers the following topics:

- General Inspection
- Handle Adjustment
- The Front/Rear Panel
- To Set a Waveform
- To Set Modulate/Sweep/Burst
- To Set Output
- To Use Digital Input
- To Use Store/Utility/Help Function
1.1. General Inspection

When you get a new SDG1000 Series Function/Arbitrary Waveform Generator, you are suggested to take the following steps to inspect the instrument.

1. Inspect the shipping container for damage.
 If there are damages in the packing or foam, keep them until the whole machine and the accessories pass the electric and mechanical testing.

2. Check the accessories.
 Accessories supplied with the instrument are listed in chapter 6 ‘Appendix A: Accessories’.
 If the contents are incomplete or damaged, please notify your sales representative.

3. Inspect the instrument.
 In case any mechanical damage or defect, or if the instrument does not operate properly or pass performance tests, notify your sales representative. If the shipping container is damaged, or the cushioning materials show signs of stress, notify the carrier as well as your sales office. Keep the shipping materials for the carrier’s inspection. Offices will arrange for repair or replacement at their option without waiting for claim settlement.
1.2. Handle Adjustment

To adjust the handle position of SDG1000 Function/Arbitrary Waveform Generator, please grip the handle by the sides and pull it outward. Then, make the handle rotate to the desired position.

![Figure 1-1 Viewing Position and Carrying Position](image)
1.3. The Front/Rear Panel

When you get a new SDG1000 Series Function/Arbitrary Waveform Generator, first you need to understand how to operate the front/rear panel correctly. This chapter will make a brief introduction and description for the operation and functions of the front/rear panel.

The SDG1000 Series Function/Arbitrary Waveform Generator has a clear and simple front panel. See Figure 1-2 and Figure 1-3. The front panel has a knob and functional keys. The 5 blue grey buttons on the right side of the screen are menu buttons (named F1 to F5 from up to down) with the help of which, you can enter different functions menu or have direct specific applications. The signal input and output interfaces are set at the front and rear panels which can help generating multiple arbitrary waveforms. The various interfaces can meet the need of the multiple interface communications.
Figure 1-3 Front Panel of SDG1000 Series

Figure 1-4 Rear Panel of SDG1000 Series
Character definitions in this User Manual:

The signs for buttons in this manual are the same as the panel buttons. Please note that, the signs for the functional buttons on the operation panel are represented by squared words, such as \textbf{Sine}, which represents the transparent functional key with Sine on it on the front panel, while the menu buttons are represented by brighten words such as \textbf{Freq}, which means the frequency option in the Sine menu.

![Figure 1- 5 Display Interface (Sine Wave is the default display signal)](image)
1.4. To Set a Waveform

On the operation panel, there is a set of buttons with waveform icon. See Figure 1-6. The exercise below will help you familiarize with the waveform selection settings.

![Waveform Selection Buttons](image)

Figure 1-6 Waveform Selection Buttons

1. Press **Sine** button and the waveform window will display sine waveform. SDG1000 Series Generator can generate sine signal with a frequency from 1μHz to 50MHz. By setting frequency/period, amplitude/high level, offset/low level, sine signal with different parameters can be generated.
As is shown in Figure 1-7, the default signal parameters are: 1kHz frequency, 4.0Vpp amplitude and 0Vdc offset.

2. Press [Square] button, and the waveform window displays square waveform. SDG1000 Series Generator can generate square signal with a frequency from 1μHz to 25MHz and variable duty cycle.

As is shown in Figure 1-8, the default signal parameters are: 1kHz frequency, 4.0Vpp amplitude, 0Vdc offset and 50% duty cycle.
3. Press **Ramp** button, and the waveform window displays ramp waveform.

SDG1000 Series Generator can generate ramp signal with a frequency of
from 1μHz to 300kHz and variable symmetry.

![Figure 1-9 Ramp Signal Display Interface](image)

As is shown in Figure 1-9, the default signal parameters are: 1kHz frequency,
4.0Vpp amplitude, 0Vdc offset and 50% symmetry.

4. Press **Pulse** button, and the waveform window displays pulse waveform.

SDG1000 Series Generator can generate pulse signal with a frequency
from 500μHz to 5 MHz and variable pulse width and delay.
As is shown in Figure 1-10, the default signal parameters are: 1kHz frequency, 4.0Vpp amplitude, 0Vdc offset, 200μs pulse width.

5. Press the Noise button, and the waveform window displays noise waveform. SDG1000 Series Generator can generate noise signal with a bandwidth up to 50MHz.

As is shown in Figure 1-11, the default signal parameters are: 2.0V Stdev and 10mV Mean.
6. Press **Arb** button, and the waveform window displays arbitrary waveform. SDG1000 Series Generator can generate repeatable arbitrary waveform signals with at most 16K points and 5MHz frequency.

As is shown in Figure 1-12, the default signal parameters are: 1kHz frequency, 4.0Vpp amplitude and 0mVdc offset.
1.5. To Set Modulate/Sweep/Burst

As shown in Figure 1-13, there are three buttons on the front panel, which are used for modulation, sweep and burst settings. The instructions below will help you familiarize with the setting of these functions.

![Mod, Sweep, Burst Button](image)

Figure 1-13 Modulate/Sweep/Burst Button

1. Press the Mod button, the modulated waveforms will be generated. The modulated waveform can be changed by modifying the parameters such as type, internal/external modulation, depth, frequency, waveform, etc. SDG1000 Series can modulate waveform using AM, FM, PM, ASK, FSK, PWM and DSB-AM. Sine, square, ramp and arbitrary waveforms can be modulated (pulse, noise and DC can not be modulated).

![Modulated Waveform Display Interface](image)

Figure 1-14 Modulated Waveform Display Interface
2. Press **Sweep** button, sine, square, ramp or arbitrary waveform can be swept (pulse, noise and DC cannot be swept).

In the sweep mode, SDG1000 Series generate signal with variable frequencies.

![Sweep Waveform Display Interface](image)

Figure 1-15 Sweep Waveform Display Interface

3. Press **Burst** button, burst for sine, square, ramp, pulse or arbitrary waveform can be generated.

![Burst Waveform Display Interface](image)

Figure 1-16 Burst Waveform Display Interface
1.6. To Set Output

As is shown in Figure 1-17, there are two buttons on the right side of the operation panel, which are used to output control. The instruction below will help you familiarize with these functions.

Press **Output** button, activate or deactivate the output signal.

Term Explanation

Burst: Output waveforms with set cycle times.

Burst can last for certain times of waveform cycle (N-Cycle Burst) or be controlled by external gated signals (Gated Burst). Burst applies to all kinds of waveforms, but noise can only be used in gated burst. Generally it is called burst function within every signal generator.
1.7. To Use Digital Input

As is shown in Figure 1-18, there are three sets of buttons on the operation panel, which are direction button, the knob and the keypad. The instruction below will help you familiarize with the digital input function.

Figure 1-18 Front Panel Digital Input

1. The up and down keys are used to shift parameters and the left and right keys are used to shift digits.
2. Keypad is used to directly set the parameters value.
3. Knob is used to change a signal digit value whose range is 0~9.
1.8. To Use Store/Utility/Help Function

As is shown in Figure 1-19, there are three buttons on the operation panel, which are used to call the store/recall, utility and help function. The instruction below will help you familiarize with these functions.

![Store/Recall Utility Help Button](image)

Figure 1-19 Store/Recall Utility and Help Button

1. The Store/Recall button is used to store waveform data and configure information.
2. The Utility button is used to set the auxiliary system function, change the output configure parameters, interface setting, system setting information or perform the instrument self-test and read the calibration information, etc.
3. The Help button is used to read the help information.
2. Operating Your Generator

Up to now you have got a brief understanding about SDG1000 series with the front/rear panel, every function control area and keys. You should also know how to set your Function/Arbitrary Waveform Generator for your usage. If you are not familiar with these operations, you are suggested to read chapter one ‘Getting Started’ again.

This chapter covers the following topics:

- Setting Sine Signal
- Setting Square Signal
- Setting Ramp Signal
- Setting Pulse Signal
- Setting Noise Signal
- Setting Arb Signal
- Output Modulated Signal
- Output Sweep Signal
- Output Burst Signal
- Store/Recall
- Utility Setting
- Help System

You are suggested to read this chapter carefully so as to understand SDG1000 Series Generator’s versatile waveform setting functions and more operation methods.
2.1. To Set Sine Signals

Press the Sine button to call the sine operation. The sine waveform parameters are set by using the sine operation menu.

The parameters of sine waveforms are: frequency/period, amplitude/high level, offset/low level and phase. Different sine signals are generated by setting these parameters. As is shown in Figure 2-1, in the soft key menu, select Freq. Cursor is located in the frequency parameter area in the parameter display window, and users can set the frequency value here.

![Figure 2-1 Sine Parameter Display Interface](image)
To Set the Output Frequency/Period

1. Press **Sine** → **Freq**, to set the frequency parameter.

 The frequency shown on the screen when the instrument is powered is the default value or the set value beforehand. When setting the function, if the current value is valid for the new waveform, it will be used sequentially. If you want to set the period for the waveform, press **Freq/Period** button again, to switch to the period parameter (the current operation is displayed in inverse color).

2. Input the desired frequency.

 Use the keypad to input the parameter value directly, and press the corresponding button to select the parameter unit. Or you can use the direction button to select the digit you want to edit, and then use the knob to change its value.
To Set the Output Amplitude

1. Press [Sine] → [Ampl], to set the amplitude.

 The amplitude shown on the screen when the instrument is powered is the default value or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially. If you want to set the waveform by high level or low level, press the [Ampl/HLevel] or [Offset/LLevel] button again, to switch into the high level or low level parameter (the current operation is displayed in inverse color).

Instruction:
When using the keypad to enter the digit, you can use the left direction button to move the cursor backward and delete or change the value of the previous digit.
2. Input the desired Amplitude

Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button.

![Amplitude Input](image)

Figure 2- 4 Setting the Amplitude

To Set the Output Offset

1. Press [Sine]→[Offset], to set the offset.

 The offset shown on the screen when the instrument is powered is the default value or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.

2. Input the desired Offset

 Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button.
Figure 2-5 Setting the Offset
2.2. To Set Square Signals

Press [Square] button to call the Square operation. The square waveform parameters are set by using the Square operation menu.

The parameters of Square waveforms are: frequency/period, amplitude/high level, offset/low level, phase and duty. As is shown in Figure 2-6, select [Duty]. Cursor is located in the duty parameter area in the parameter display window, and users can set the duty value here.

![Figure 2-6 Square Parameter Display Interface]
Term Explanation:

Duty Cycle: The percentage that the high level takes up the whole period.

Please Note: for the Frequency

<table>
<thead>
<tr>
<th>Duty Cycle Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 10MHz:</td>
</tr>
<tr>
<td>From 10MHz to 20MHz (included):</td>
</tr>
<tr>
<td>Higher than 20MHz:</td>
</tr>
</tbody>
</table>

To Set the Duty Cycle

1. Press $\text{Square} \rightarrow \text{Duty}$, to set the duty cycle.

The duty cycle shown on the screen when the instrument is powered is the default value or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.
2. Input the desired Duty Cycle

Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button. The generator will change the waveform immediately.

Figure 2-8 Setting the Duty Cycle
2.3. To Set Ramp Signals

Press [Ramp] button to call the ramp operation. The ramp waveform parameters are set by using the ramp operation menu.

The parameters for ramp waveforms are: frequency/ period, amplitude/ high level offset/ low level, phase and symmetry. As is shown in Figure 2-9, in the soft key menu, select Symmetry. Cursor is located in the symmetry parameter area in the parameter display window, and users can set the symmetry value here.

Figure 2-9 Ramp Parameter Display Interface
Term Explanation:

Symmetry: The percentage that the rising period takes up the whole Period.

Input Range: 0~100%.

To Set the Symmetry

1. Press **Ramp → Symmetry**, to set the symmetry.

 The symmetry shown on the screen when the instrument is powered is the default value or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.

2. Input the desired Symmetry
Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button. The generator will change the waveform immediately.

![Figure 2-11 Setting the Symmetry](image)

Figure 2-11 Setting the Symmetry
2.4. **To Set Pulse Signals**

Press the **Pulse** button to call the pulse operation. The pulse waveform parameters are set by using the pulse operation menu.

The parameters for pulse waveforms are: frequency/period, amplitude/high level, offset/low level, pulse width and delay. As is shown in Figure 2-12, in the soft key menu, select **PulWidth**. Cursor is located in the pulse width parameter area in the parameter display window, and users can set the pulse width value here.

![Figure 2-12 Pulse Parameter Display Interface](image-url)
Term Explanation:

Pulse Width:

Positive Pulse Width: the time span between thresholds of 50% of the rising edge amplitude to the next 50% of the falling edge amplitude;

Negative Pulse Width: the time span between thresholds of 50% of the falling edge amplitude to the next 50% of the rising edge amplitude.

To Set the Pulse Width

1. Press **Pulse → PulWidth**, to set the pulse width.

 The pulse width shown on the screen when the instrument is powered is the default value or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.

2. Input the desired Pulse Width
Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button. The Generator will change the waveform immediately.

![Figure 2-14 Setting the Pulse Width](image)

To Set the Delay

1. Press **Pulse → Delay**, to set the delay.

 The delay shown on the screen when the instrument is powered is the default value or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.

2. Input the desired delay

 Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button. The generator will change the waveform immediately.
Figure 2-15 Setting the Delay
2.5. To Set Noise Signals

Press [Noise] button to call the Gaussian White noise operation. The noise waveform parameters are set by using the noise operation menu.

The parameters for noise waveforms are: Stdev and mean. As is shown in Figure 2-16, in the soft key menu, select Stdev, Cursor is located in the Stdev parameter area in the parameter display window, and users can set the Stdev value here. Noise is non-regulated signal which has no frequency or period.

![Noise Parameter Display Interface](image-url)

Figure 2-16 Noise Parameter Display Interface
Figure 2- 17 Table 2- 5 Menu Explanations of Noise Waveform

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stdev</td>
<td></td>
<td>Set the signal Stdev</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>Set the signal mean</td>
</tr>
</tbody>
</table>
2.6. To Set Arbitrary Signals

Press `Arb` button to call the Arb operation. The Arb waveform parameters are set by using the Arb operation menu.

The Arb signal consists of two types: the system built-in waveform and the user-definable waveform. The parameters for Arb waveforms are: frequency/period, amplitude/high level, offset/low level and phase.

![Arb Parameter Display Interface](image)

Figure 2-18 Arb Parameter Display Interface
Menu Explanations of Arb Waveform (Page 1/2)

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq/Period</td>
<td></td>
<td>Set the signal frequency or period; The current parameter will be switched at a second press.</td>
</tr>
<tr>
<td>Ampl/HLevel</td>
<td></td>
<td>Set the signal amplitude or high level; The current parameter will be switched at a second press.</td>
</tr>
<tr>
<td>Offset/LLevel</td>
<td></td>
<td>Set the signal offset or low level; The current parameter will be switched at a second press.</td>
</tr>
<tr>
<td>Phase/EqPhase</td>
<td></td>
<td>Set the phase of the signal; The current parameter will be switched at a second press.</td>
</tr>
</tbody>
</table>

Menu Explanations of Arb Waveform (Page 2/2)

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Wform</td>
<td></td>
<td>Select the built-in arbitrary signal as output.</td>
</tr>
</tbody>
</table>

Figure 2-19

Table 2-6

Figure 2-20

Table 2-7
To select the built-in Arbitrary Waveform

There are forty-eight built-in Arbitrary Waveforms and user-definable Arbitrary Waveforms inside the Generator. To select one of them, follow the instructions below:

Press $\text{Arb} \rightarrow \text{Load Wform}$, to enter the interface below.

1. To Select the Built-in Waveform

Press $\text{Arb} \rightarrow \text{Load Wform} \rightarrow \text{Built-In}$, and enter the following interface.

As is shown in Figure 2- 22, there are five kinds of arbitrary waveform.
Table 2-9 Menu Explanations of Built-In Arbitrary Waveform

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>Select common waveform.</td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td>Select math waveform.</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>Select project waveform.</td>
<td></td>
</tr>
<tr>
<td>Winfun/Triangle</td>
<td>Select windows function/triangle waveform.</td>
<td></td>
</tr>
<tr>
<td>Select</td>
<td>Validate the built-in waveform.</td>
<td></td>
</tr>
</tbody>
</table>

![Common Built-In Arbitrary Waveform interface](image)

Table 2-10 Menu Explanations of Common Built-In Arbitrary Waveform

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>StairUp</td>
<td>Select the built-in stair up waveform.</td>
<td></td>
</tr>
<tr>
<td>StairDn</td>
<td>Select the built-in stair down waveform.</td>
<td></td>
</tr>
<tr>
<td>StairUD</td>
<td>Select the built-in stair up waveform.</td>
<td></td>
</tr>
<tr>
<td>PPulse</td>
<td>Select the built-in positive pulse waveform.</td>
<td></td>
</tr>
<tr>
<td>NPulse</td>
<td>Select the built-in negative pulse waveform.</td>
<td></td>
</tr>
<tr>
<td>Trapezia</td>
<td>Select the built-in trapezoid waveform</td>
<td></td>
</tr>
<tr>
<td>UpRamp</td>
<td>Select the built-in up ramp waveform.</td>
<td></td>
</tr>
<tr>
<td>DnRamp</td>
<td>Select the built-in down ramp waveform.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2- 11 Menu Explanations of Math Built-in Arbitrary Waveform

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExpFall</td>
<td></td>
<td>Select the built-in exponential fall waveform.</td>
</tr>
<tr>
<td>ExpRise</td>
<td></td>
<td>Select the built-in exponential rise waveform.</td>
</tr>
<tr>
<td>LogFall</td>
<td></td>
<td>Select the built-in logarithmic fall waveform.</td>
</tr>
<tr>
<td>LogRise</td>
<td></td>
<td>Select the built-in logarithmic rise waveform.</td>
</tr>
<tr>
<td>Sqrt</td>
<td></td>
<td>Select the built-in square root waveform.</td>
</tr>
<tr>
<td>Root3</td>
<td></td>
<td>Select the built-in Root3 waveform.</td>
</tr>
<tr>
<td>X^2</td>
<td></td>
<td>Select the built-in X^2 waveform.</td>
</tr>
<tr>
<td>X^3</td>
<td></td>
<td>Select the built-in X^3 waveform.</td>
</tr>
<tr>
<td>Sinc</td>
<td></td>
<td>Select the built-in sinc waveform; Sinc = sin(x)/x.</td>
</tr>
<tr>
<td>Gaussian</td>
<td></td>
<td>Select the built-in gaussian waveform.</td>
</tr>
<tr>
<td>Dlorentz</td>
<td></td>
<td>Select the built-in D-lorentz waveform.</td>
</tr>
<tr>
<td>Haversin</td>
<td></td>
<td>Select the built-in haversine waveform.</td>
</tr>
<tr>
<td>Lorentz</td>
<td></td>
<td>Select the built-in lorentz waveform.</td>
</tr>
<tr>
<td>Gauspuls</td>
<td></td>
<td>Select the built-in gaussian-modulated sinusoidal pulse waveform.</td>
</tr>
<tr>
<td>Gmonpuls</td>
<td></td>
<td>Select the built-in Gaussian monopulse waveform.</td>
</tr>
<tr>
<td>Tripuls</td>
<td></td>
<td>Select the built-in triangle pulse waveform.</td>
</tr>
</tbody>
</table>
Table 2- 12 Menu Explanations of Project Built-in Arbitrary Waveform

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td>Select the built-in electrocardiogram (ECG) signal waveform.</td>
<td></td>
</tr>
<tr>
<td>Quake</td>
<td>Select the built-in loma prieta earthquake waveform.</td>
<td></td>
</tr>
<tr>
<td>Chirp</td>
<td>Select the built-in swept-frequency cosine waveform.</td>
<td></td>
</tr>
<tr>
<td>TwoTone</td>
<td>Select the built-in two tone signal waveform.</td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>Select the built-in sin wave with white noise waveform.</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 2- 26 Winfun/Triangle Built-In Arbitrary Waveform interface](image)

Table 2- 13 Menu Explanations of Winfun/Triangle Built-in Arbitrary Waveform

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamming</td>
<td>Select the built-in hamming window waveform.</td>
<td></td>
</tr>
<tr>
<td>Hanning</td>
<td>Select the built-in hanning window waveform.</td>
<td></td>
</tr>
<tr>
<td>Kaiser</td>
<td>Select the built-in kaiser window waveform.</td>
<td></td>
</tr>
<tr>
<td>Blackman</td>
<td>Select the built-in blackman windows waveform.</td>
<td></td>
</tr>
<tr>
<td>Gaussian</td>
<td>Select the built-in gaussian window waveform.</td>
<td></td>
</tr>
<tr>
<td>Triangle</td>
<td>Select the built-in triangle window waveform.</td>
<td></td>
</tr>
<tr>
<td>Hairs</td>
<td>Select the built-in hairs window waveform.</td>
<td></td>
</tr>
<tr>
<td>Bartlet</td>
<td>Select the built-in bartlet window waveform.</td>
<td></td>
</tr>
<tr>
<td>Tan</td>
<td>Select the built-in tangent waveform.</td>
<td></td>
</tr>
<tr>
<td>Cot</td>
<td>Select the built-in cotangent waveform.</td>
<td></td>
</tr>
<tr>
<td>Sec</td>
<td>Select the built-in secant waveform.</td>
<td></td>
</tr>
<tr>
<td>Csc</td>
<td>Select the built-in cosecant waveform.</td>
<td></td>
</tr>
<tr>
<td>Asin</td>
<td>Select the built-in inverse sine waveform.</td>
<td></td>
</tr>
<tr>
<td>Acos</td>
<td>Select the built-in inverse cosine waveform.</td>
<td></td>
</tr>
</tbody>
</table>
2. To Select the Stored Waveform

Press $\text{Arb} \rightarrow \text{Load Wform} \rightarrow \text{Stored Wforms}$, and enter the following interface.

As is shown in Figure 2-27, use the direction keys or knob to choose the corresponding arbitrary waveform and press Select.

![Figure 2-27 Stored Wform Display Interface](image-url)

<table>
<thead>
<tr>
<th>CH1 Waveform</th>
<th>Load: Hi-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1.000 000kHz</td>
</tr>
<tr>
<td>Amp</td>
<td>4.000Vpp</td>
</tr>
<tr>
<td>Phase</td>
<td>0.0°</td>
</tr>
<tr>
<td>Offset</td>
<td>0.0mVdc</td>
</tr>
</tbody>
</table>
2.7. To Generate the Modulated Waveform

Use the Mod button to generate modulated waveform. SDG1000 Series can generate AM, FM, ASK, FSK, PM, PWM and DSB-AM modulated waveforms. Modulating parameters vary with the types of the modulation. In AM, users can set the source (internal/external), depth, modulating frequency, modulating waveform and carrier waveform; In FM, users can set the source (internal/external), modulating frequency, frequency deviation, modulating waveform and carrier waveform; In ASK, users can set the source (internal/external), Key Freq and carrier waveform; In FSK, users can set the source (internal/external), key frequency, Hop Freq and carrier waveform; In PM, users can set the source (internal/external), phase deviation, modulating frequency, modulating waveform and carrier waveform.

We will cover how to set these parameters in details according to the modulation types.

![Display Interface of Modulated Waveform Parameter](image)

Figure 2-28 Display Interface of Modulated Waveform Parameter
AM

The modulated waveform consists of two parts: the carrier waveform and the modulating waveform. In AM, the amplitude of the carrier waveform varies with the instantaneous voltage of the modulating waveform. The parameters for the AM are in Figure 2-29.

Press \(\text{Mod} \rightarrow \text{Type} \rightarrow \text{AM} \), to enter the following menu.

Table 2-14 Menu Explanations of the AM Parameters

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Freq</td>
<td></td>
<td>Set the modulating waveform frequency. Frequency range: 2mHz~20kHz (internal source only).</td>
</tr>
<tr>
<td>AM Depth</td>
<td></td>
<td>Set the amplitude range.</td>
</tr>
<tr>
<td>Type</td>
<td>AM</td>
<td>Amplitude modulation.</td>
</tr>
<tr>
<td>Shape</td>
<td>Sine, Square, Triangle, UpRamp, DnRamp, Noise, Arb</td>
<td>Choose the modulating waveform. To change the carrier waveform parameter, press Sine, Square, Ramp, Arb</td>
</tr>
<tr>
<td>Source</td>
<td>Internal</td>
<td>The source is internal</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td>The source is external. Use the [Modulation In] connector in the rear panel.</td>
</tr>
</tbody>
</table>
Term Explanation

Modulation Depth

The amplitude range (also called ‘Percentage Modulation’). Modulation depth varies from 1% to 120%.

- In the 0% modulation, the output amplitude is the half of the set one.
- In the 100% modulation, the output amplitude is the same with the set one.
- For an external source, the depth of AM is controlled by the voltage level of the connector connected to the [Modulation In]. ±6V corresponds to the currently set depth 100%.

FM

The modulated waveform consists of two parts: the carrier waveform and the modulating waveform. In FM, the frequency of the carrier waveform varies with the instantaneous voltage of the modulating waveform. The parameters for the FM are as shown in Figure 2-30.

Figure 2-30 Setting Interface of FM Waveform Parameter
Press **Mod → Type → FM**, to enter the following menu.

Figure 2-31

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM Freq</td>
<td>Set the modulating waveform frequency. Frequency range 2mHz~20kHz (internal source).</td>
<td></td>
</tr>
<tr>
<td>FM Dev</td>
<td>Set the maximum frequency deviation</td>
<td></td>
</tr>
</tbody>
</table>

Type

- **FM**
 - **Shape**
 - Sine
 - Square
 - Triangle
 - UpRamp
 - DnRamp
 - Noise
 - Arb
 - Choose the modulating waveform. To change the carrier waveform parameter, press Sine, Square, Ramp, Arb

- **Source**
 - Internal
 - External
 - The source is internal.
 - The source is external. Use the [Modulation In] connector in the rear panel.

Term Explanation

Frequency Deviation

- The deviation should be equal to or less than the carrier waveform frequency.
- The sum of the deviation and the carrier frequency should be equal to or less than maximum frequency of the selected function.
- For an external source, the deviation is controlled by the voltage level of the connector connected to the [Modulation In]. +6V corresponds to the selected deviation and -6V to the negative selected deviation.
ASK

ASK is a form of modulation that represents digital data as variations in the amplitude of a carrier wave. The amplitude of an analog carrier signal varies in accordance with the bit stream (modulating signal), keeping frequency and phase constant. The parameters for the ASK are as shown in Figure 2-32.

![Figure 2-32 Setting Interface of ASK Waveform Parameter]

Press Mod → Type → ASK, to enter the following menu.

![Figure 2-33]

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Freq</td>
<td>Set the frequency at which the output amplitude shifts between the carrier amplitude and zero (internal modulation only): 2mHz~50kHz.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>ASK</td>
<td>Amplitude shift keying modulation.</td>
</tr>
<tr>
<td>Source</td>
<td>Internal</td>
<td>The source is internal.</td>
</tr>
<tr>
<td>Source</td>
<td>External</td>
<td>The source is external; Use the [ExtTrig/Gate/FSK/Burst] connector in the rear panel.</td>
</tr>
</tbody>
</table>
FSK
The FSK Modulation is a modulation method, the output frequency of which switches between two the pre-set frequencies (carrier waveform frequency and the hop frequency). The frequency at which the output frequency switches is called the key frequency.

![Setting Interface of FSK Waveform Parameter](image)

Figure 2-34 Setting Interface of FSK Waveform Parameter

Press Mod → Type → FSK, to enter the following interface

Table 2-17 Menu Explanations of the FSK Parameters

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Freq</td>
<td></td>
<td>Set the frequency at which the output frequency shifts between the carrier frequency and the hop frequency (internal modulation only): 2mHz~50kHz.</td>
</tr>
<tr>
<td>Type</td>
<td>FSK</td>
<td>Frequency shift keying modulation.</td>
</tr>
<tr>
<td>Hop Freq</td>
<td></td>
<td>Set the hop frequency.</td>
</tr>
<tr>
<td>Source</td>
<td>Internal</td>
<td>The source is internal.</td>
</tr>
<tr>
<td>Source</td>
<td>External</td>
<td>The source is external. Use the [ExtTrig/Gate/FSk/Burst] connector in the rear panel.</td>
</tr>
</tbody>
</table>
PM
The modulated waveform consists of two parts: the carrier waveform and the modulating waveform. In PM, the phase of the carrier waveform varies with the instantaneous voltage level of the modulating waveform. The parameters for the PM are as shown in Figure 2-36.

![Figure 2-36 Setting Interface of PM Waveform Parameter](image)

Press \(\text{Mod} \rightarrow \text{Type} \rightarrow \text{PM} \), enter the following interface.
Table 2-18 Menu Explanations of the PM Parameters

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM Freq</td>
<td></td>
<td>Set the modulating waveform frequency. Frequency range: 2mHz~20kHz</td>
</tr>
<tr>
<td>Phase Dev</td>
<td></td>
<td>Range from 0° ~ 360°.</td>
</tr>
<tr>
<td>Type</td>
<td>PM</td>
<td>Phase modulation</td>
</tr>
<tr>
<td>Shape</td>
<td>Sine, Square, Triangle, UpRamp, DnRamp, Noise, Arb</td>
<td>Choose the modulating waveform. To change the carrier waveform parameter, press Sine, Square, Ramp, Arb</td>
</tr>
<tr>
<td>Source</td>
<td>Internal</td>
<td>The source is internal.</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td>The source is external. Use the [ExtTrig/Gate/FSK/Burst] connector in the rear panel.</td>
</tr>
</tbody>
</table>

PWM

The modulated waveform consists of two parts: the carrier waveform and the modulating waveform, the carrier waveform is only pulse. In PWM, the pulse width of pulse varies with the instantaneous voltage of the modulating waveform. The parameters for the FM are as shown in Figure 2-38.
Press Mod → Pulse → PWM, to enter the following menu.

![Setting Interface of PWM Waveform Parameter](image)

Table 2-19 Menu Explanations of the PWM Parameters

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM Freq</td>
<td></td>
<td>Set the modulating waveform frequency. Frequency range: 2mHz~20kHz (internal source only).</td>
</tr>
<tr>
<td>Width Dev</td>
<td></td>
<td>Set the width range. Set the duty range.</td>
</tr>
<tr>
<td>Type PWM</td>
<td></td>
<td>Amplitude modulation.</td>
</tr>
<tr>
<td>Shape</td>
<td>Sine, Square, Triangle, UpRamp, DnRamp, Noise, Arb</td>
<td>Choose the modulating waveform. The carrier waveform is pulse.</td>
</tr>
<tr>
<td>Source</td>
<td>Internal, External</td>
<td>The source is internal. The source is external. Use the [Modulation In] connector in the rear panel.</td>
</tr>
</tbody>
</table>
DSB-AM

Press Mod→ Type → DSB-AM. The parameters for the DSB-AM are as shown in Figure 2-40.

![Figure 2-40 Setting Interface of DSB-AM Waveform Parameter](image)

Figure 2-41 Table 2-20 Menu Explanations of the DSB-AM Parameters

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSB Freq</td>
<td></td>
<td>Set the modulating waveform frequency. Frequency range: 2mHz~20kHz (internal source only).</td>
</tr>
<tr>
<td>Type</td>
<td>DSB-AM</td>
<td>Amplitude modulation.</td>
</tr>
<tr>
<td>Shape</td>
<td>Sine, Square, Triangle, UpRamp, DnRamp, Noise, Arb</td>
<td>Choose the modulating waveform. To change the carrier waveform parameter, press Sine, Square, Ramp, Arb</td>
</tr>
<tr>
<td>Source</td>
<td>Internal, External</td>
<td>The source is internal, The source is external. Use the [Modulation In] connector in the rear panel.</td>
</tr>
</tbody>
</table>
2.8. To Generate Sweep

In the frequency sweep mode, the function generator ‘steps’ from the start frequency to the stop frequency at the sweep time you specify. Sweep can be generated by sine, square, ramp or arbitrary waveforms (pulse, noise and DC are not allowed).

![Figure 2- 42 Setting Interface of Sweep Waveform Parameter](image)

Press **Sweep** button to enter the following menu. Set the waveform parameters by using the operation menu.
Sweep

Frequency Setting

Use start freq and stop freq or center freq and freq span to set the range of the frequency. Press the button again to switch between each other.

Table 2-21 Menu Explanations of Waveform Sweep (Page 1/2)

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swp Time</td>
<td></td>
<td>Set the time span of the sweep in which the frequency changes from the start frequency to stop frequency.</td>
</tr>
<tr>
<td>Stop Freq</td>
<td></td>
<td>Set the stop frequency of the sweep; Set the frequency span of the sweep.</td>
</tr>
<tr>
<td>Start Freq</td>
<td></td>
<td>Set the start frequency of the sweep; Set the center frequency of the sweep.</td>
</tr>
<tr>
<td>Source</td>
<td></td>
<td>Choose internal source. Choose external source, use the [Ext Trig/Gate/FSK/Burst] connector in the rear panel. Set the start and stop time by hand.</td>
</tr>
</tbody>
</table>

Table 2-22 Menu Explanations of Waveform Sweep (Page 2/2)

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trig Out</td>
<td>Open Off</td>
<td>Set signal triggered at rise edge; Turn off trigger setting.</td>
</tr>
<tr>
<td>Linear/Log</td>
<td></td>
<td>Set the sweep with linear spacing; Set the sweep with logarithmic spacing.</td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td>Sweep upward; Sweep downward.</td>
</tr>
</tbody>
</table>
2.9. To Generate Burst

Burst function can generate versatile waveforms in burst, which can last specific times of waveform cycle (N-Cycle burst), or when external gated signals (gated burst) is applied, any waveform could be used, but noise can only be used in Gated Burst.

Press Burst button to enter the following interface. Set the waveform parameters by using the operation menu.

![Setting Interface of Burst Waveform Parameter](image)

Figure 2-45 Setting Interface of Burst Waveform Parameter
Set the N-Cycle Burst

Press **Burst → N Cycle**, to enter the following interface.

Table 2-23 Menu Explanations of the N-Cycle Parameters (Page 1/2)

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Set the burst Period.</td>
<td></td>
</tr>
<tr>
<td>Start Phase</td>
<td>Set the start phase of the burst.</td>
<td></td>
</tr>
<tr>
<td>NCycle Gated</td>
<td>Use the N-Cycle mode. Use the Gated mode.</td>
<td></td>
</tr>
</tbody>
</table>

Burst Period

Set the time span between an N-Cycle burst and the next. If necessary the period will increase to allow the specific number of cycles in a burst. **Burst Period > Carrier Period × Burst Number**

Start Phase

Define the start point in a waveform. The phase varies from 0° to 360°, and the default setting is 0°. For an Arbitrary Waveform, 0° is the first waveform point.
N-Cycle/Gated

N-Cycle has specific number of waveform cycles, and every burst is activated by a trigger event. Gated burst use external source to control burst as when to be activated.

Cycles

Set the number of waveform cycle in an N-Cycle (1 to 50,000 or Infinite).

If you choose Infinite, then a continuous waveform will be generated which will not stop until a trigger event happens.

- If needed, Burst Period will increase to cater to the specific number of cycles.
- For an infinite-cycle burst, external or manual trigger is needed to activate burst.
Delay

Set the time delay between the trigger input and the start of the N-Cycle burst. The max delay is 240ns.

Set the Gated Burst

Press Burst → Gated, to enter the following interface.

Table 2-25 Menu Explanations of the Gated Burst Parameters

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCycle Gated</td>
<td></td>
<td>Set the NCycle mode; Set the gated mode.</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive Negative</td>
<td>Set the polarity for the gated signal.</td>
</tr>
</tbody>
</table>
2.10. To Store and Recall

Press \(\text{[Store/Recall]} \) button to enter the following interface. You can save or recall the state documentation inside the generator. The state file on the U Disk is also allowed to recall or delete. File names can only be English. User can only recall or delete the data documentation you save via CSV of the Oscilloscopes.

![Save and Read Interface](image)

Figure 2- 49 Save and Read Interface

<table>
<thead>
<tr>
<th>Function</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Type</td>
<td>State Data</td>
<td>The setting of the generator; Arbitrary waveform file;</td>
</tr>
<tr>
<td>Browser</td>
<td>Directory File</td>
<td>Shift between the directory and file.</td>
</tr>
<tr>
<td>Save</td>
<td></td>
<td>Save the waveform to the appointed place.</td>
</tr>
<tr>
<td>Recall</td>
<td></td>
<td>Recall the waveform or setting information in the specific position of the memory.</td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td>Delete the selected file.</td>
</tr>
</tbody>
</table>

Table 2- 26 Menu Explanations of Save and Recall (Page 1/2)
About the browser

The directory selection shift is done by the direction keys. In the directory mode, pressing the right key will open the lower directory while the left key will fold the directory. Up and down key are used to shift between the directories;

To Save the Instrument State

Users are allowed to store the instrument state in any of the 10 non-volatile memories. The state storage will ‘memorize’ the selected function (including the arbitrary waveform, frequency, amplitude, DC offset, duty cycle, symmetry, and other modulation parameter used.)

To save the instrument state, the procedures are given as followed:

1. Choose the file type to store

 Press [Store/Recall] → Type → State, and choose state as the storage type.

2. Choose the location of the file.

 There are ten positions in the Local(C :), choose anyone of them by rotating the knob.

3. Name the file and save it

 Press Save button, enter the desired name. Press Save to finish.
To Use USB Storage

As is shown in Figure 2-51, the storage location is divided into: The internal storage Local(C:) and the U Disk storage USB Device (A:). At the left side of the front panel, there is a USB interface. When a USB storage is connected, the storage menu will show ‘USB Device (A:)’. Otherwise, the default location is the internal location Local(C:).

![USB Storage Interface]

Figure 2-51 USB Storage Interface

1. **Install the USB Device**
 Insert the USB Device into the USB interface on the front panel, and the screen will show ‘USB flash device plug in’, and storage menu will show ‘USB Device (A:)’

2. **Choose the USB Device**
 Press Browser -> Directory, move the cursor with the up or down direction key to select ‘USB Device (A:)’. Press the right key to open the lower directory, use the up and down direction key to choose the file ‘SDG1000’. Use the right key to open the lower directory, and up and down key to select the file ‘Workspace’. Input the file name and save.
3. Remove the USB Device

Remove the USB Device from the interface. The system will inform you ‘USB flash device plug out’, and the ‘USB Device (A :)’ in the storage menu will disappear.

Note: USB Device can only be used by U Disk; portable hard disk is not supported.

To Save a File

Press [Store/Recall] → [Store], to enter the following interface. Enter the desired file name in the ‘File Name’ frame. In the middle of the figure below is the input keypad, used to edit the file name. Use the up and down direction keys and knob to select the desired character; use the left and right direction keys to edit the input file name.

![File Storage Interface](image-url)

Figure 2- 52 File Storage Interface
1. **English Input**

The English input interface is as shown in Figure 2- 54, to save a file named ‘NEWFILE’, follow the steps below:

![English Input Interface](image)

Figure 2- 54 English Input Interface

1. Press **InType->En**, to enter the English interface.
2. Input the file name ‘NEWFILE’.

 Use the Knob to adjust the cursor’s horizontal position and the up and down key to adjust the vertical position. Select the Character ‘N’ and

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Type</td>
<td>En</td>
<td>English input.</td>
</tr>
<tr>
<td>Select</td>
<td></td>
<td>Select the current character.</td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td>Delete the current character.</td>
</tr>
<tr>
<td>Save</td>
<td></td>
<td>Store the file with the current name</td>
</tr>
</tbody>
</table>
press Select. Repeat this until you have inputted ‘NEWFILE’.

(3) Edit the File Name

When you have entered a wrong character, move the cursor to the wrong character to be deleted and press Delete to remove it. Reenter the file name.

(4) Press Save, to finish and save the file.
2.11. To Set the Utility Function

With the Utility Function, you can set the parameters of the generator such as: DC On/Off, Sync On/Off, Output Parameter, Interface Parameter, System Setting and Testing Parameter. The DC switch offers the options of DC output or Arbitrary Waveform Output. Sync Switch offers the option to choose the Sync Signal or not. Output Setting provides the parameter setting for Load/HighZ and Normal/Inverse. The System Setting provides the setting for Language, Display, Beep, Screen Guard, Format, Power System Configure and default setting; Test provides the self-testing and calibration function.

Press Utility button, to enter the Utility Menu. Its functions are listed below in Figure 2-55, Figure 2-55 and Figure 2-55.

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>On/Off</td>
<td>Set the output waveform to be DC. Set the output waveform to be arbitrary.</td>
</tr>
<tr>
<td>Interface</td>
<td>USB Setup</td>
<td>Set USB function.</td>
</tr>
<tr>
<td></td>
<td>GPIB</td>
<td>Set the GPIB address.</td>
</tr>
<tr>
<td>Output Setup</td>
<td></td>
<td>Set the output parameter.</td>
</tr>
<tr>
<td>Sync</td>
<td>On/Off</td>
<td>Open Sync output; Close Sync output.</td>
</tr>
</tbody>
</table>
To Set the DC Output

Press [Utility] → [DC] → [DC On], to enter the following interface. Please note that there is a 'DC On' sign at the middle left of the screen.

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td></td>
<td>Set the system configuration.</td>
</tr>
<tr>
<td>Test/Cal</td>
<td></td>
<td>Test and calibrate the instrument.</td>
</tr>
<tr>
<td>EditInfo</td>
<td></td>
<td>Information of the system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update</td>
<td></td>
<td>Update function.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td></td>
<td>Input license to update bandwidth.</td>
</tr>
<tr>
<td>Counter</td>
<td></td>
<td>Frequency counter.</td>
</tr>
</tbody>
</table>
Figure 2- 58 DC Setting Interface

DC Offset
Set the DC voltage level.

To Shift into the Arbitrary Waveform Output
1. Press **Utility → DC → DC Off**, to close DC output and return to arbitrary waveform output.
2. Press any functional button, and the waveform output setting turns into the arbitrary waveform output. The DC output is turned off automatically.

To Set IO
Press **Utility → IO Setup**, to set the IO interface. The equipment stands for RAW protocol and TMC protocol, user may setup corresponding protocol by IO Setup.

To Set Output Parameter
Press **Utility → Output Setup**, to enter the following interface.
1. **To Set the Output Load**

 For the [Output] connector on the front panel, the generator has a built-in 50Ω series impedance. If the actual load does not match the set one, the displayed amplitude and offset will be incorrect. This function is used to match the displayed voltage with the expected one.

 Steps for setting the load:

 Press **Utility** → **Output Setup** → **Load**, to enter the following interface.

 Please note that the load parameter shown on the right bottom is the default setting when the power is on or the pre-set load value. If the current value is valid for the output, then current value will be used.

Menu Explanations of Output Setting (Page 1/2)

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>HighZ</td>
<td>Set the load connected to the Output Connector; Set the load connected to the Output Connector to be HighZ.</td>
</tr>
<tr>
<td>Normal</td>
<td>Invert</td>
<td>Normal output; Inverse output.</td>
</tr>
<tr>
<td>Coupling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChCopy</td>
<td></td>
<td>Copy one channel to the other</td>
</tr>
<tr>
<td>Done</td>
<td></td>
<td>Finish operation.</td>
</tr>
</tbody>
</table>
Instruction
SDG1000 Series has a fixed 50Ω Series Impendence. No matter what value the set parameter is, if the real load is different from the set one, the displayed voltage will not equal the real voltage.

2. To Set the Invert Waveform

Press [Utility] → [Output Setup] → [Invert] to set the Inverse Waveform Output. When the waveform is inverse, no offset will change.

3. To Set the Coupling

SDG1000 supports frequency and phase couplings. When couplings is enabled, CH1 and CH2 are mutual base source. When the frequency or phase of one channel (as the base source) is changed, the corresponding parameter of the other channel will be changed automatically and always keeps the specified frequency deviation or phase deviation relative to the...
base channel.
Press Utility → Output Setup → Coupling, to set the coupling function.

To Set the Sync Output

The generator provides Sync output through the [Sync] connector on the rear panel. All standard output functions (except DC and Noise) have a corresponding Sync signal. For some applications, they can be disabled if users do not want to use it,

- In the default setting, the Sync signal should be connected to the [Sync] connector (activated). When the Sync Signal is disabled, the output voltage of the [Sync] connector is level low.
- In the Inverse Mode, the Waveform that corresponds to the Sync Signal does not inverse.
- The Sync Signal is a Pulse Signal with fixed positive pulse width, which is more than 50ns.
- For non-modulated waveform, the Sync Signal reference is the carrier.
- For internal modulating AM, FM and PM, the Sync signal reference is the modulated signal (not the carrier signal).
- For ASK and FSK, the Sync Signal Reference is the keying Frequency.
- For a Sweep, when the sweep starts, the Sync Signal becomes TTL Level High. The Sync frequency equals the specific Sweep time.
- For the Burst, when the burst starts, the Sync Signal is Level High.
- For the External Gated Burst, the Sync Signal follows the External Gated Signal.
To measure the frequency

SDG1000 Series have included a frequency counter which could measure frequency from 100mHz to 200MHz. Press \texttt{Utility} \rightarrow \texttt{Count}, to enter the following interface.

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq</td>
<td></td>
<td>Measure frequency.</td>
</tr>
<tr>
<td>Period</td>
<td></td>
<td>Measure period.</td>
</tr>
<tr>
<td>PWidth</td>
<td></td>
<td>Measure positive width;</td>
</tr>
<tr>
<td>NWidth</td>
<td></td>
<td>Measure negative width.</td>
</tr>
<tr>
<td>Duty</td>
<td></td>
<td>Measure duty</td>
</tr>
<tr>
<td>ReFeFreq</td>
<td></td>
<td>Set the reference frequency</td>
</tr>
<tr>
<td>TrigLev</td>
<td></td>
<td>Set the trigger level voltage.</td>
</tr>
<tr>
<td>Setup</td>
<td></td>
<td>Set the count configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>DC</td>
<td>Set the coupling mode to DC;</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>Set the coupling mode to AC.</td>
</tr>
<tr>
<td>HFR</td>
<td>On</td>
<td>Open the high frequency rejection filter.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Close the high frequency rejection filter.</td>
</tr>
<tr>
<td>Default</td>
<td></td>
<td>Set count settings to default.</td>
</tr>
</tbody>
</table>
To Set the System

Press Utility → System, to enter the following interface.

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number format</td>
<td></td>
<td>Set the number format.</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td>Set the display language.</td>
</tr>
<tr>
<td>Power On</td>
<td>Default Last</td>
<td>All the settings return to default when powered; All the settings return to the last one when powered.</td>
</tr>
<tr>
<td>Set to Default</td>
<td></td>
<td>Set all the settings to default.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beep</td>
<td>On</td>
<td>Open beep; Close beep.</td>
</tr>
<tr>
<td>ScrnSvr</td>
<td>1min</td>
<td>Activate the screen saver program. Screen saver will be on if no action is taken within the time that you have selected. Press any button to resume.</td>
</tr>
<tr>
<td></td>
<td>5min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Deactivate the screen saver program.</td>
</tr>
<tr>
<td>CLKSource</td>
<td>Internal</td>
<td>Choose the system clock source.</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td></td>
</tr>
</tbody>
</table>
Power On
Choose the configuration setting when the machine is powered.
Two choices are available: the default setting and the latest. Once selected, the setting will be used when the instrument is powered.

Beep
Activate or deactivate the sound when an error occurs from the front panel or the remote interface. Activate or deactivate any sound made by the button or knob on the front panel. The current setting is stored in the non-volatile memory.

1. Set the Format

Press Utility → System → Number Format, to enter the following interface.

![Figure 2- 64 Set the number Format](image)
According to the different choices of the point and the separator, the format can have various forms.

1. as point, press Separator -> On, the example is as followed:

 ![Frequency](image1)

 Figure 2- 66 Set Format

2. as point, press -> Separator -> On, the example is as followed:

 ![Frequency](image2)

 Figure 2- 67 Set Format

3. as point, press Separator -> Off, the example is as followed:

 ![Frequency](image3)

 Figure 2- 68 Set Format

Table 2- 35 Menu Explanations of Setting the Number Format

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>.</td>
<td>Using dot to represent point; Using comma to represent point.</td>
</tr>
<tr>
<td>Separator</td>
<td>On</td>
<td>Enable the Separator; Close the Separator; Use Space to separate.</td>
</tr>
<tr>
<td>Space</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Space</td>
<td></td>
</tr>
</tbody>
</table>
(4) as point, press **Separator**->**Off**, the example is as followed:

![Frequency 1,000000kHz](Figure 2- 70 Set Format)

(5) as point, press **Separator**->**Space**, the example is as followed:

![Frequency 1,000 000kHz](Figure 2- 69 Set Format)

(6) as point, press **Separator**->**Space**, the example is as followed:

![Frequency 1,000 000kHz](Figure 2- 70 Set Format)

2. Language Setup

The SDG1000 Series Generator offers two languages (English and Simplified Chinese) for user to choose.

To Select Language, press Utility and then Language to select the language.

The Procedure is as followed:

Press **Utility**→**System**→**Language**, to change the language.
3. To Return to Default Setting

Press **Utility** →**System** → **Set to Default**, to set the system to the default setting. The default settings of the system are as followed:

Table 2- 36 Factory Default Setting

<table>
<thead>
<tr>
<th>Output</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Sine Wave</td>
</tr>
<tr>
<td>Frequency</td>
<td>1kHz</td>
</tr>
<tr>
<td>Amplitude/Offset</td>
<td>4Vpp/0Vdc</td>
</tr>
<tr>
<td>Phase</td>
<td>0°</td>
</tr>
<tr>
<td>Terminals</td>
<td>High Z</td>
</tr>
<tr>
<td>Modulation</td>
<td>Default</td>
</tr>
<tr>
<td>Carrier</td>
<td>1kHz Sine Wave</td>
</tr>
<tr>
<td>Modulating</td>
<td>100Hz Sine Wave</td>
</tr>
<tr>
<td>AM Depth</td>
<td>100%</td>
</tr>
<tr>
<td>FM Deviation</td>
<td>500Hz</td>
</tr>
<tr>
<td>Key Freq</td>
<td>100Hz</td>
</tr>
<tr>
<td>Key Freq</td>
<td>100Hz</td>
</tr>
<tr>
<td>FSK Hop Frequency</td>
<td>1MHz</td>
</tr>
<tr>
<td>Phase Deviation</td>
<td>180°</td>
</tr>
<tr>
<td>Sweep</td>
<td>Default</td>
</tr>
<tr>
<td>Start/Stop Frequency</td>
<td>100Hz/1.9kHz</td>
</tr>
<tr>
<td>Sweep Time</td>
<td>1S</td>
</tr>
<tr>
<td>Trig Out</td>
<td>Off</td>
</tr>
<tr>
<td>Mode</td>
<td>Linear</td>
</tr>
<tr>
<td>Direction</td>
<td>↑</td>
</tr>
<tr>
<td>Burst</td>
<td>Default</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Period</td>
<td>10ms</td>
</tr>
<tr>
<td>Phase</td>
<td>0°</td>
</tr>
<tr>
<td>Count</td>
<td>1Cycle</td>
</tr>
<tr>
<td>Trig</td>
<td>Off</td>
</tr>
<tr>
<td>Trigger</td>
<td>Default</td>
</tr>
<tr>
<td>Source</td>
<td>Internal</td>
</tr>
</tbody>
</table>
2.12. Test/Cal

Press **Utility → Test/Cal**, to enter the following menu.

![Figure 2-71 Test/Cal function Menu](image)

Figure 2-71 Test/Cal function Menu

<table>
<thead>
<tr>
<th>Function</th>
<th>Settings</th>
<th>Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelfTest</td>
<td>SelfTest</td>
<td>Perform system self-test.</td>
</tr>
<tr>
<td>SelfCal</td>
<td>SelfCal</td>
<td>Do self calibration</td>
</tr>
</tbody>
</table>
SelfTest

Press Utility → Test/Cal → SelfTest, to enter the following menu.

Figure 2- 73

<table>
<thead>
<tr>
<th>Function Menu</th>
<th>Settings</th>
<th>Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scr Test</td>
<td></td>
<td>Run screen test program.</td>
</tr>
<tr>
<td>Key Test</td>
<td></td>
<td>Run keyboard test program.</td>
</tr>
<tr>
<td>LED Test</td>
<td></td>
<td>Run LED test program.</td>
</tr>
</tbody>
</table>

1. Scr Test

Select Scr Test to enter the screen test interface. The clue words ‘Press ‘7’ Key to continue, Press ‘8’ Key to exit’ is displayed. You could press the ‘7’ for test.

Figure 2- 74 Screen Test Interface
2. Key Test

Select ‘keyboard Test’ to enter the keyboard test interface, the on-screen lathy rectangle shapes represent the front panel keys. The shapes with two arrows beside them represent the front panel knobs. Test all keys and knobs and you should also verify that all the backlit buttons illuminate correctly.

Note:
- When you operate, the screen would display the white (color LCD).
- The tested button or knobs corresponding area would display green (color LCD).
- At the bottom of the screen display ‘Press ‘8’ Key Three Times to exit’ information prompt to show that press ‘8’ three times for quitting the test.

![Key Test Interface](image-url)
3. LED Test

Select ‘LED Test’ to enter the lighten interface, the on-screen lathy rectangle shapes represent the front panel keys; the shapes with two arrows beside them represent the front panel knobs. The clue words ‘Press ‘7’ Key to continue, ‘Press ‘8’ Key to exit’ is displayed, You could press the ‘7’ button continuously for testing, when buttons are lighted ,the corresponding area on the screen would display green(color LCD).

![LED Test Interface](image)

Figure 2- 76 Led Test Interface
SelfCal

Press **Utility** → 1/2 → **Test/Cal** → **SelfCal**, to enter SelfCal, as is shown in Figure 2-. SelfCal: do self calibration, environment you use the generator changes, system may calibrate data based on change of current environment.

<table>
<thead>
<tr>
<th>Sine CHZ</th>
<th>Sine CH1</th>
<th>Util</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SelfTest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SelfAdjust</td>
</tr>
<tr>
<td>Press any function key to continue.</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

![SelfAdjust Interface](image)

Figure 2- 77 SelfCal Interface
2.13. Edition Information

Press the EditInfo option button of the Utility Menu to view the generator’s hardware and software configuration.

![Edit Info Interface]

Edition Information introduce

Boot-strap No:
The times of boot-strap

Software version:
Software version of current equipment

Hardware version:
00-00-00-15-22 represents ordinally: PCB version, BOM version, Daughter card version, FPGA version, CPLD version.

Model:
Contains information of brand of product, series, bandwidth.
For example: SDG1050 represents SIGLENT’s 1000 series function/arbitrary waveform generator, the bandwidth is 50MHz.
Serial No:

Bit 1-6 represent maker and series of the product. Bit 7-10 represent production date. Bit 11-14 represent serial number of product.

For example: SDG00002110008 represents the eighth generator made by SIGLENT in the second quarter of 2011.
2.14. Updating Firmware

Using USB flash drive update firmware.

The software of the generator can be updated directly via USB flash drive. This process takes about two minutes. Follow the next steps:

1. Insert USB flash drive with firmware procedure to USB host interface on the front panel of the generator.
2. Press the "Utility" button to enter the ‘Utility Menu’.
3. Press ‘1/2 ↓ ’ option button to enter the second page of ‘Utility Menu’.
4. Press the ‘Update’ option button.
5. Press ‘Brower’ option button to select ‘Directory’, then select the ‘USB Device (A:)’ through direction key.
6. Press ‘Brower’ option button to select ‘File’, then select the ‘XXXX.ADS’ file by direction key.
7. Press the ‘Recall’ option button to updating.
8. After accomplish update, restart the generator.

Note: Don’t cut off the power during product is being updating.
2.15. Updating Bandwidth

If you need to update the bandwidth, please contact with SIGLENT, acquire a right license and input it in the following interface.

![License Interface](image)

Figure 2- 78 Bandwidth Updating Interface

Note: SDG1000 Series support 5M, 10M, 20M, 25M and 50M bandwidth.
2.16. How to Use the Built-in Help System

You can get a particularly help for every button on the front panel by using the built-in help system. Or you can get help about the operation of the front panel buttons with the help list.

Press [Help] to enter the following interface.

![Help Menu](image)

Figure 2-79 Help Menu

<table>
<thead>
<tr>
<th>Help Menu</th>
<th>Settings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the instrument information</td>
<td>Help</td>
<td>Cursor upward to select.</td>
</tr>
<tr>
<td>Basic waveform output</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Arbitrary waveform output</td>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>Generate a DC signal</td>
<td>Select</td>
<td></td>
</tr>
<tr>
<td>Generate a modulated waveform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweep output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronize multiple instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset the instrument to default state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical support</td>
<td>Cancel</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-40 Help Menu Explanations

- **Function Menu**: Select to read the information.
3. Application and Examples

To help the user master how to use the Function/Arbitrary Waveform Generator more efficiently, we will describe some examples in detail. All the examples below use the default setting of the instrument except especial explanations.

This chapter includes the following topics:

- Example 1: Generate a Sine Wave
- Example 2: Generate a Square Wave
- Example 3: Generate a Ramp Wave
- Example 4: Generate a Pulse Wave
- Example 5: Generate a Noise Wave
- Example 6: Generate an Arbitrary Wave
- Example 7: Generate a Sweep Wave
- Example 8: Generate a Burst Wave
- Example 9: Generate an AM Wave
- Example 10: Generate a FM Wave
- Example 11: Generate a PM Wave
- Example 12: Generate a FSK Wave
- Example 13: Generate an ASK Wave
- Example 14: Generate a PWM Wave
- Example 15: Generate a DSB-AM Wave
3.1. Example 1: Generate a Sine Wave

Generate a sine wave with 50kHz frequency, 5Vpp amplitude and 1Vdc offset.

- **Steps:**

 - Set the frequency.
 1. Press \(\text{Sine} \rightarrow \text{Freq} \) and choose frequency which will display in white color.
 2. Input ‘50’ from the keyboard and choose the unit ‘kHz’. The frequency is set to be 50kHz.

 - Set the amplitude.
 1. Press \(\text{Ampl} \) to choose \(\text{Ampl} \) which will display in white color.
 2. Input ‘5’ from the keyboard and choose the unit ‘Vpp’. The amplitude is set to be 5Vpp.

 - Set the Offset.
 1. Press \(\text{Offset} \) to choose \(\text{Offset} \) which will display in white color.
 2. Input ‘1’ from the keyboard and choose the unit ‘Vdc’. The offset is set to be 1Vdc.

When the frequency, amplitude and offset are set, the wave generated is shown in Figure 3-1;
Figure 3-1 Sine Waveform
3.2. Example 2: Generate a Square Wave

Generate a square wave with 5kHz frequency, 2Vpp amplitude, 0Vdc offset and 30% duty cycle.

Steps:

- Set the frequency.
 1. Press [Square]→[Freq] and choose Frequency which will display in white color.
 2. Input ‘5’ from the keyboard and choose the unit ‘kHz’. The frequency is set to be 5kHz.

- Set the amplitude.
 1. Press [Ampl] to choose Ampl which will display in white color.
 2. Input ‘2’ from the keyboard and choose the unit ‘Vpp’. The amplitude is set to be 2Vpp.

- Set the offset.
 1. Press [Offset] to choose Offset which will display in white color.
 2. Input ‘0’ from the keyboard and choose the unit ‘Vdc’. The Offset is set to be 0Vdc.

- Set the duty
 1. Press [Duty] to choose Duty which will display in white color.
 2. Input ‘30’ from the keyboard and choose the unit ‘%’. The duty is set to be 30%.

When the frequency, amplitude, offset and duty cycle are set, the wave generated is shown in Figure 3-2.
Figure 3-2 Square Waveform

<table>
<thead>
<tr>
<th>CH1 Waveform</th>
<th>Load: Hi-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5.000 000kHz</td>
</tr>
<tr>
<td>Amp</td>
<td>2.000Vpp</td>
</tr>
<tr>
<td>Offset</td>
<td>0.0mVdc</td>
</tr>
<tr>
<td>Duty</td>
<td>30.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duty</th>
<th>2.000Vpp</th>
<th>0.0mVdc</th>
<th>30.0%</th>
<th>5.000 000kHz</th>
<th>0.0°</th>
<th>Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.000Vpp</td>
<td>0.0mVdc</td>
<td>30.0%</td>
<td>5.000 000kHz</td>
<td>0.0°</td>
<td>Duty</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-2 Square Waveform
3.3. Example 3: Generate a Ramp Wave

Generate a ramp wave with 10μs period, 100mVpp amplitude, 20mVdc offset, 45° phase and 30% symmetry.

Steps:

- Set the period.
 1. Press Ramp→Freq and choose Period which will display in white color.
 2. Input ‘10’ from the keyboard and choose the unit ‘μs’. The period is set to be 10μs.

- Set the amplitude.
 1. Press Ampl to choose Ampl which will display in white color.
 2. Input ‘100’ from the keyboard and choose the unit ‘mVpp’. The amplitude is set to be 100mVpp.

- Set the offset.
 1. Press Offset to choose Offset which will display in white color.
 2. Input ‘20’ from the keyboard and choose the unit ‘mVdc’. The offset is set to be 20mVdc.

- Set the phase
 1. Press Phase to choose Phase which will display in white color.
 2. Input ‘45’ from the keyboard and choose the unit ‘°’. The phase is set to be 45°.
Set the symmetry

1. Press **Symmetry** to choose **Symmetry** which will display in white color.
2. Input ‘30’ from the keyboard and choose the unit ‘30%’. The symmetry is set to be 30%.

When the period, amplitude, offset, phase and symmetry are set, the wave generated is shown in Figure 3-3:

![Figure 3-3 Ramp Waveform](image)
3.4. Example 4: Generate a Pulse Wave

Generate a pulse wave with 5kHz frequency, 5V high level, -1V low level, 40μs pulse width and 20ns delay.

- **Steps:**
 1. Set the frequency.
 1. Press **Pulse** → **Freq** and choose **Freq**, which will display in white color.
 2. Input ‘5’ from the keyboard and choose the unit ‘kHz’. The frequency is set to be 5 kHz.

 2. Set the high level
 1. Press **Ampl** and choose the **HLevel** which will display in white color.
 2. Input ‘5’ from the keyboard and choose the unit ‘V’. The high level is set to be 5V.

 3. Set the low level
 1. Press **Offset** and choose the **LLevel** which will display in white color.
 2. Input ‘-1’ from the keyboard and choose the unit ‘V’. The low level is set to be -1V.

 4. Set the pulse width
 1. Press **PulWidth** and choose **PulWidth** which will display in white color.
 2. Input ‘40’ from the keyboard and choose the unit ‘μs’. The pulse width is set to be 40μs.
Set the Delay

1. Press **Delay** and choose **Delay** which will display in white color.
2. Input ‘20’ from the keyboard and choose the unit ‘ns’. The delay is set to be 20ns.

When the frequency, high level, low level, pulse width and delay are set, the wave generated is shown in Figure 3-4.
3.5. Example 5: Generate a Noise Wave

Generate a noise waveform with 1V stdev and 150 mV mean.

- **Steps:**
 - **Set the Amplitude**
 1. Press Noise → Stdev.
 2. Input ‘1’ from the keyboard and choose the unit ‘V’. The stdev is set to be 1 V.
 - **Set the Offset**
 1. Press Mean.
 2. Input ‘150’ from the keyboard and choose the unit ‘mV’. The mean is set to be 150 mV.

When the stdev and mean are set, the wave generated is shown in Figure 3-5.

![Figure 3-5 Noise Waveform](image)
3.6. Example 6: Generate an Arbitrary Wave

Generate an arbitrary waveform (Sinc) with 5MHz frequency, 2Vrms amplitude and 0Vdc offset.

- **Steps:**
 1. Set the type of the arbitrary waveform.
 1. Press **Arb → (1/2↓) → Load form**, to choose the built-in waveform.
 2. Press **Built-In → Math**, There are sixteen math arbitrary waveforms.
 3. Choose **Sinc**, and press **Select** to enter Arb Main Menu.
 2. Set the frequency.
 1. Press **Freq** and choose **Frequency** which will display in white color.
 2. Input ‘5’ from the keyboard and choose the unit ‘MHz’. The frequency is set to be 5MHz.
 3. Set the amplitude.
 1. Press **Ampl** to choose **Ampl** which will display in white color.
 2. Input ‘2’ from the keyboard and choose the unit ‘Vrms’. The amplitude is set to be 2Vrms.
 4. Set the offset.
 1. Press **Offset** to choose **Offset** which will display in white color.
 2. Input ‘0’ from the keyboard and choose the unit ‘Vdc’. The offset is set to be 0Vdc.

When the arbitrary waveform’s type, frequency, amplitude and offset are set,
the wave generated is shown in Figure 3-6:

![Sinc Waveform](image)

Figure 3-6 Sinc Waveform
3.7. Example 7: Generate a Sweep Linear Wave

Generate a sine sweep waveform whose frequency starts from 100Hz to 10kHz. Use internal trigger mode, linear sweep, and the sweep time is 2s.

Steps:

- Set the sweep function:
 - Press [Sine] and choose the sine waveform as the sweep function. The default setting of the source is internal.

- Set the frequency, amplitude and offset.
 1. Press [Freq] and choose [Freq] which will display in white color. Input ‘5’ from the keyboard and choose the unit ‘kHz’ to set the frequency 5kHz.
 2. Press [Ampl] to choose [Ampl] which will display in white color. Input ‘5’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 5Vpp.
 3. Press [Offset] to choose [Offset] which will display in white color. Input ‘0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc.

- Set the sweep time.
 - Press [Sweep → Sweep Time], Input ‘2’ from the keyboard and choose the unit ‘s’ to set sweep time 2s.

- Set the start frequency
 - Press [Start Freq], Input ‘100’ from the keyboard and choose the unit ‘Hz’ to set start freq 100Hz.
- Set the end frequency
 Press Stop Freq, Input ‘10’ from the keyboard and choose the unit ‘kHz’ to set stop freq 10kHz.

- Set the Sweep Mode
 Press (1/2↓) → Linear, and choose Linear.

When all parameters above are set, the linear sweep wave generated is shown in Figure 3-7.
3.8. Example 8: Generate a Burst Wave

Generate a burst waveform of 5 cycles. The period is 3ms. Use internal trigger and 0 degree phase.

- **Steps:**
 1. Set the sweep function:
 - Press **Sine** and choose the sine waveform as the burst function. The default setting of the source is internal.
 2. Set the frequency, amplitude and offset
 1. Press **Freq** and choose **Freq** which will display in white color. Input ‘10’ from the keyboard and choose the unit ‘kHz’ to set the frequency 10kHz.
 2. Press **Ampl** to choose **Ampl** which will display in white color. Input ‘1’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 1Vpp.
 3. Press **Offset** to choose **Offset** which will display in white color. Input ‘0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc
 3. Set the sweep mode.
 - Press **Burst → N Cycle**, choose **N Cycle Mode**.
 4. Set the burst period
 - Press **Period**, input ‘3’ from the keyboard and choose the unit ‘ms’ to set the period 3ms.
 5. Set the start phase
 - Press **Start Phase**, input ‘0’ from the keyboard and choose the unit ‘°’ to
set the start phase 0°.

- **Set the burst cycles**
 Press \((1/2↓)\) → Choose Cycles. Input ‘5’ from the keyboard and choose the unit ‘Cycle’ to set the burst cycle 5.

- **Set the delay**
 Press Delay, and input ‘100’ from the keyboard and choose the unit ‘μs’ to set the delay 100μs.

When all parameters above are set, the wave generated is shown in Figure 3- 8:

![Figure 3- 8 Burst Waveform Output](image)
3.9. Example 9: Generate an AM Wave

Generate an AM waveform with 80% depth. The carrier is a sine wave with 10kHz frequency, and the modulating wave is a sine wave with 200Hz frequency.

Steps:

- Set the frequency, amplitude and offset of the carrier wave.

1. Press $Sine$, and choose the sine waveform as the carrier wave
2. Press $Freq$ and choose $Freq$ which will display in white color. Input ‘10’ from the keyboard and choose the unit ‘kHz’ to set the frequency 10kHz
3. Press $Ampl$ and choose $Ampl$ which will display in white color. Input ‘1’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 1Vpp.
4. Press $Offset$ and choose $Offset$ which will display in white color. Input ‘0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc.

- Set the modulation type AM and parameters.

1. Press $Mod → Type → AM$, choose AM. Please notice that the message shown on the middle left side of the screen is ‘AM’.
2. Press $AM Freq$, input ‘200’ from the keyboard and choose the unit ‘Hz’ to set the AM freq 200Hz.
3. Press $AM Depth$, input ‘80’ from the keyboard and choose the unit ‘%’ to set the AM depth 80%.
4. Press $Shape → Sine$, to choose sine wave as the modulating waveform.

When all parameters above are set, the wave generated is shown in Figure 3-9:
Figure 3- 9 AM Waveform
3.10. Example 10: Generate a FM Wave

Generate a FM waveform, the carrier is a sine wave with 10kHz frequency, and the modulating wave is a sine wave with 1 Hz frequency, 2kHz frequency deviation.

Steps:

1. Set the frequency, amplitude and offset of the carrier wave.
 1. Press Sine and choose the sine waveform as the carrier wave
 2. Press Freq and choose Freq which will display in white color. Input ‘10’ from the keyboard and choose the unit ‘kHz’ to set the frequency 10kHz
 3. Press Ampl and choose Ampl which will display in white color. Input ‘1’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 1Vpp.
 4. Press Offset and choose Offset which will display in white color. Input ‘0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc.

2. Set the modulation type FM and parameters.
 1. Press Mod → Type → FM, choose FM. Please notice that the message shown on the middle left side of the screen is ‘FM’.
 2. Press FM Freq, input ‘1’ from the keyboard and choose the unit ‘Hz’ to set the AM Freq 1Hz.
 3. Press FM Dev, input ‘2’ from the keyboard and choose the unit ‘kHz’ to set the FM deviation 2kHz.
 4. Press Shape → Sine, to choose sine wave as the modulating waveform.

When all parameters above are set, the wave generated is shown in Figure
Figure 3-10 FM Waveform
3.11. Example 11: Generate a PM Wave

Generate a PM waveform, the carrier is a sine wave with 10kHz frequency, and the modulating wave is a sine wave with 2kHz frequency, 90° phase deviation.

Steps:

- Set the frequency, amplitude and offset of the carrier wave.
 1. Press Sine, and choose the sine waveform as the carrier wave
 2. Press Freq and choose Freq which will display in white color. Input ‘10’ from the keyboard and choose the unit ‘kHz’ to set the frequency 10kHz
 3. Press Amp and choose Amp which will display in white color. Input ‘5’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 5Vpp.
 4. Press Offset and choose Offset which will display in white color. Input ‘0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc.

- Set the modulation type PM and parameters.
 1. Press Mod → Type → PM, choose PM. Please notice that the message shown on the middle left side of the screen is ‘PM’.
 2. Press PM Freq, input ‘2’ from the keyboard and choose the unit ‘kHz’ to set the PM freq 2kHz.
 3. Press Phase Dev, input ‘90’ from the keyboard and choose the unit ‘°’ to set the phase deviation 90°.
 4. Press Shape → Sine, to choose sine wave as the modulating waveform.

When all parameters above are set, the wave generated is shown in Figure 3-11:
Figure 3-11 PM Waveform
3.12. Example 12: Generate a FSK Wave

Generate a FSK waveform with 200Hz key frequency. The carrier is a sine wave with 10kHz frequency, and the hop frequency is 500Hz.

- **Steps:**

 1. Set the frequency, amplitude and offset of the carrier wave.
 1. Press Sine, and choose the sine waveform as the carrier wave.
 2. Press Freq and choose Freq which will display in white color. Input’10’ from the keyboard and choose the unit ‘kHz’ to set the frequency 10kHz.
 3. Press Ampl and choose Ampl which will display in white color. Input’5’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 5Vpp.
 4. Press Offset and choose Offset which will display in white color. Input’0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc.

 2. Set the modulation type FSK and parameters.
 1. Press Mod→Type→FSK, choose FSK. Please notice that the message shown on the middle left side of the screen is ‘FSK’.
 2. Press Key Freq, input’200’ from the keyboard and choose the unit ‘Hz’ to set the key frequency 200 Hz.
 3. Press Hop Freq, input ‘500’ from the keyboard and choose the unit ‘Hz’ to set the hop frequency 500Hz.

When all parameters above are set, the wave generated is shown in Figure 3-12:
Figure 3- 12 FSK Waveform
3.13. Example 13: Generate an ASK Wave

Generate an ASK waveform with 500Hz key frequency. The carrier is a sine wave with 5kHz frequency.

- **Steps:**
 - Set the frequency, amplitude and offset of the carrier wave.
 1. Press [Sine], and choose the sine waveform as the carrier wave.
 2. Press [Freq] and choose [Freq] which will display in white color. Input ‘5’ from the keyboard and choose the unit ‘kHz’ to set the frequency 5kHz.
 3. Press [Ampl] and choose [Ampl] which will display in white color. Input ‘5’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 5Vpp.
 4. Press [Offset] and choose [Offset] which will display in white color. Input ‘0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc.

 - Set the modulation type ASK and parameters.
 1. Press [Mod] → [Type] → [ASK], choose ASK. Please notice that the message shown on the middle left side of the screen is ‘ASK’.
 2. Press [Key Freq], input ‘500’ from the keyboard and choose the unit ‘Hz’ to set the key freq 500 Hz.

When all parameters above are set, the wave generated is shown in Figure 3-13.
Figure 3-13 ASK Waveform

<table>
<thead>
<tr>
<th>Sine</th>
<th>CHZ</th>
<th>Sine</th>
<th>CH1</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Freq</td>
<td>500.000Hz</td>
<td>Key Freq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type ASK</td>
<td></td>
<td>Type ASK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Internal</td>
<td></td>
<td>Source Internal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASK Mod</td>
<td>Load: Hi-Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Freq</td>
<td>500.000Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freq 5.000kHz</td>
<td>Ampl 5.000Vpp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.14. Example 14: Generate a PWM Wave

Generate a PWM waveform with 200Hz key frequency. The carrier is a pulse wave with 5kHz frequency.

- **Steps:**
 1. Press **Pulse**, and choose the Pulse waveform as the carrier wave.
 2. Press **Freq** and choose **Freq** which will display in white color. Input ‘5’ from the keyboard and choose the unit ‘kHz’ to set the frequency 5kHz.
 3. Press **Ampl** and choose **Ampl** which will display in white color. Input ‘5’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 5Vpp.
 4. Press **Offset** and choose **Offset** which will display in white color. Input ‘0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc.
 5. Press **PulWidth** and choose **PulWidth** which will display in white color. Input ‘40’ from the keyboard and choose the unit ‘us’ to set the PulWidth 40us.

- Set the modulation type PWM and parameters.
 1. Press **Mod → Type → PWM**, Please notice that the message shown on the middle left side of the screen is ‘PWM’.
 2. Press **Key Freq**, input ‘200’ from the keyboard and choose the unit ‘Hz’ to set the key freq 200 Hz.
 3. Press **Width Dev**, input ‘20’ from the keyboard and choose the unit ‘us’ to set the Width Dev 20us.
When all parameters above are set, the wave generated is shown in Figure 3-14

![Figure 3-14 PWM Waveform](image-url)
3.15. Example 15: Generate a DSB-AM Wave

Generate a DSB-AM waveform with 100Hz key frequency. The carrier is a sine wave with 2kHz frequency.

Steps:
- Set the frequency, amplitude and offset of the carrier wave.
1. Press \text{Sine}, and choose the sine waveform as the carrier wave.
2. Press \text{Freq} and choose \text{Freq} which will display in white color. Input ‘2’ from the keyboard and choose the unit ‘kHz’ to set the frequency 2kHz.
3. Press \text{Ampl} and choose \text{Ampl} which will display in white color. Input ‘4’ from the keyboard and choose the unit ‘Vpp’ to set the amplitude 4Vpp.
4. Press \text{Offset} and choose \text{Offset} which will display in white color. Input ‘0’ from the keyboard and choose the unit ‘Vdc’ to set the offset 0Vdc.

- Set the modulation type DSB-AM and parameters.
1. Press \text{Mod} \rightarrow \text{Type} \rightarrow \text{DSB-AM}, choose DSB-AM. Please notice that the message shown on the middle left side of the screen is ‘DSB-AM’.
2. Press \text{Key Freq}, input ‘100’ from the keyboard and choose the unit ‘Hz’ to set the key freq 100Hz.

When all parameters above are set, the wave generated is shown in Figure 3-15.
Figure 3-15 DSB-AM Waveform
4. Troubleshooting

General Inspecting

After receiving a new SDG1000 Series Function/Arbitrary Waveform Generator, please inspect the instrument as followed:

1. **Inspect the shipping container for damage.**

 Keep the damaged shipping container or cushioning material until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically.

2. **Inspect the whole instrument.**

 In case there is any mechanical damage or defect, or the instrument does not operate properly or fails performance tests, notify the SIGLENT sales representative.

 If the shipping container is damaged, or the cushioning materials show signs of stress, notify the carrier as well as the SIGLENT sales department. Keep the shipping materials for carrier’s inspection.

3. **Check the accessories.**

 Accessories supplied with the instrument are listed below. If the contents are incomplete or damaged, notify the SIGLENT sales representative.

 Standard Accessories:
 - A Quick Start
 - A Certification
 - A Guaranty Card
 - A CD (including EasyWave 1.0 computer software system)
 - A Power Cord that fits the standard of destination country
 - A USB Cable
Troubleshooting

1. After the waveform generator is powered on, the screen remains dark, please do the following steps:

(1) Check the power cable’s connection.
(2) Ensure the power switch is turned on.
(3) After the inspections above, restart the waveform generator.
(4) If the generator still doesn’t work after the checking, please connect with SIGLENT company

2. If there is no signal wave output after setting the parameters, please do as following steps:

(1) Check whether the BNC cable has connected with output channel or not.
(2) Check whether the output button have been turned on or not.
5. Service and Support

Maintain summary

SIGLENT warrants that the products that it manufactures and sells will be free from defects in materials and workmanship for a period of three years from the date of shipment from an authorized SIGLENT distributor. If a product proves defective within the respective period, SIGLENT will provide repair or replacement as described in the complete warranty statement.

To arrange for service or obtain a copy of the complete warranty statement, please contact your nearest SIGLENT sales and service office.

Except as provided in this summary or the applicable warranty statement, SIGLENT makes no warranty of any kind, express or implied, including without limitation the implied warranties of merchantability and fitness for a particular purpose. In no event shall SIGLENT be liable for indirect, special or consequential damages.
Contact SIGLENT

MTR Add: 3/F, Building 4, Antongda Industrial Zone, Liuxian Road, 68 District, Baoan District, Shenzhen, P.R. CHINA
Service Tel: 0086 755 3661-5186
Post Code: 518101
E-mail: sales@siglent.com

http://www.siglent.com
6. Appendix

Appendix A: Accessories

SDG1000 Series Function/Arbitrary Waveform Generator Accessories:

Standard Accessories:

- A Quick Start
- A Calibration Certificate
- A Power Cord that fits the standard of destination country
- A USB Cable

Optional Accessories:

- BNC Cable
- GPIB-USB Adapter
Appendix B: Daily Maintain and Cleaning

Daily Maintain

Do not store or leave the instrument in where the LCD will be exposed to direct sunlight for long periods of time.

⚠️ CAUTION: To avoid damage to the instrument, do not expose them to sprays, liquids, or solvents.

Cleaning

If this instrument requires cleaning, disconnect it from all power sources and clean it with a mid detergent and water. Make sure the instrument is completely dry before reconnecting it to a power source.

To clean the exterior surface, perform the following steps:

1. Remove loose dust on the outside of the instrument with a lint-free cloth. Use care to avoid scratching the clear plastic display filter.
2. Use a soft cloth dampened with water to clean the instrument.

⚠️ WARNING: To avoid damage to the surface of the instrument, do not use any abrasive or chimerical cleaning agents.